音频功率放大器的频率响应曲线,通常总是中频段比较平坦,低频段与高频段会显著下降。与此相关的相位特性,若以中频段的相位作为基准,则低频段的相位相对超前,而高频段的相位则相对滞后。从中频段到低频段和从中频段到高频段的频率响应曲线的下降和相位变化,各种功率放大器均不相同,但最低频段与最高频段的频率响应斜率和相位角的大小,总是决定于该功放机的放大级数和电路形式。
在这种情况下补偿的方法较多,但总的原则必须增大在相位变化为180度的频率时的增益量下降值,而且频率响应的终端斜率不允许增大。
为了实现上述要求,应从声频范围的低频段与高频段,由频率响应开始下降的频率起到相位变化达180度的范围内进行频率特性补偿,与相位的变化相比尽可能使增益量衰减大些。一般来说,使这范围的频率响应的斜率不大于6分贝/倍频程,即能达到目的。
一般的阻容耦合式放大电路的低频段的频率响应,最后可以用通用低频衰减特性来表示。
在多级放大器中,应采用阶梯法来进行补偿。在这种情况下阶梯补偿网络尽可能接在前级放大器中。如果将此电路接在靠近功放级时,则放大器低音频段的最大输出即会减小,若要勉强增大输出,则阶梯网络之前的放大级中将会产生显著的非线性失真。
低频补偿电路
低音频段的阶梯补偿网络的电参数,一般选择在低频段的频率响应是从40Hz处开始下降,则阶梯补偿的高度约为12dB,在阻容耦合放大电路中的耦合电容器的容量尽可能大一些。
低频补偿特性曲线图
在阻容耦合与变压器输出的多级功率放大器中,高频段的频率响应也随着电路中杂散电容的存在而衰减,故必须进行补偿,才能获得高频段较平坦的特性。
高频补偿电路
在多级放大器中,输出变压器的高频特性是由自身决定的,故高频衰减的基准频率是固定不变的。而阻容耦合放大器的基准频率则由耦合电容、屏极电阻与电路中的杂散电容所决定。在实际电路中,一般高频段的频率特性从10kHz以上即呈衰减趋势。
这样阻容耦合放大器的高频段在补偿时的基准频率可以选择在10kHz到50kHz之间。高频补偿网络是由网络中的电阻与电容所决定的,提高基准频率的方法可减小补偿网络中电阻的阻值。
高频补偿特性曲线图
高频补偿电路与低频补偿电路原则相同,其阶梯补偿网络应接入前级放大器中。如将该补偿网络接到末级中,则它的频率响应开始下降的频率移到音频范围之外,否则会减小高频的最大输出。
上一篇:可编程控制器故障分析及排除