随着现代齿轮传动技术向高速重载方向发展,对其动态性能提出了愈来愈高的要求,对齿轮传动的强度、振动和噪声的要求更加严格,促使人们在齿轮动力学方面进行深入的研究。近几十年来,在齿轮传动装置内部的齿轮传动副乃至齿轮传动系统为对象的动态特性分析方面取得了不少的研究成果,并逐步运用到齿轮副的动态设计中。日本学者提供了斜齿轮振动特性曲线图以设计低振动和低噪音的齿轮。通过齿轮副的精度及安装误差计算振动激励,根据激励力的水平修改设计参数和齿轮精度以使振动激励达到足够小。
许多研究业已表明,齿轮传动装置的振动和噪音基本上是由于动载荷激励的齿轮箱的振动引起的。对于齿轮传动装置这一复杂弹性结构振动系统,不仅应从分析和改善其内部传动件的动态特性着手,更应从动力系统的角度研究其综合动态性能,进而进行低噪声、低振动的齿轮传动装置的动态设计。进行了齿轮箱的实验模态分析,以识别箱体模态参数及动力学分析模型的修正。通过试验研究了减速箱的固有频率、振型和结构灵敏度,为低噪声齿轮箱设计奠定基础。系统全面地分析齿轮传动装置的动态性能已成为齿轮动力学研究的新趋向。有如下几个重要方面:
(1)实验模态分析技术用于齿轮传动装置动态性能分析可识别系统动态特性参数、修改系统动力学模型等,作为动态设计的重要一环;
(2)用有限元等方法进行箱体结构的动力分析,并通过修改有限元参数进行结构优化设计;
(3)在充分研究单对齿轮传动副的动态性能的基础上,以整个齿轮传动系统为对象全面分析其整体综合动态性能;
(4)以预估齿轮传动装置的振动和噪声为目的的动态特性分析方法不尽相同,对于复杂的齿轮传动装置的动态设计,还应从其各组成部分的相互联系上寻求适当的分析方法。总之,从事齿轮传动装置的动态设计还有待于对其动态设计方法进行深入研究以及其内部复杂齿轮传动系统动态特性的分析。
本文关键字:暂无联系方式变频器基础,变频技术 - 变频器基础
上一篇:变频器易老化零配件的介绍