您当前的位置:五五电子网电子知识应用领域电梯Rockwell PLC在电梯位移控制设计实现 正文
Rockwell PLC在电梯位移控制设计实现

Rockwell PLC在电梯位移控制设计实现

点击数:7407 次   录入时间:03-04 11:48:27   整理:http://www.55dianzi.com   电梯

详细介绍了通过脉冲计数的方式实现10层电梯位移控制的机理。其中,首先介绍了10层电梯控制系统的硬件组成、软件实现以及脉冲选层的原理;之后分析了Rockwell的CompactLogix系列PLC的工作方式及系统的通讯方式、软件组态和变频器的PLC控制方式,并介绍了用于实现脉冲计数的硬件电路的设计;最后通过对实验结果的分析,探讨了影响电梯平层精度的因素并提出了相应的改进措施。实验表明基于CompactLogix控制器的电梯控制系统采用脉冲计数方式可取得较高的平层精度。

关键词:可编程控制器 变频器 脉冲计数 电梯控制系统 位移控制 平层精度

1  引言

  本系统是一套10层模拟电梯控制系统,可以实现实际电梯的基本功能。最初为了实现电梯的楼层检测、换速及平层停车的控制,是通过在井道内每一楼层装设上下换速、平层挡光板并在轿厢上安装光电传感器的方式[1]来实现的。实验表明,这种方法由于挡光板和光电传感器的安装位置、相对距离等有误差,使电梯运行时常发生机械故障,并且由于挡光板有一定的宽度,造成平层精度不高。改用脉冲计数的方式不仅能实现对电梯的速度控制,还能在不增加任何硬件的情况下对电梯实现位移闭环控制,同时提高了电梯平层精度。本文将以Rockwell的CompactLogix L31控制器和PowerFlex 70变频器为例,介绍利用PLC、变频器及脉冲计数电路进行位移控制的电梯控制系统,分析影响电梯平层精度的因素并提出改进措施。

2  电梯控制系统介绍

2.1  电梯控制系统硬件组成及软件实现

  本系统采用集选控制方式,由电力拖动系统和电气控制系统两部分组成。电力拖动系统主要包括电梯垂直方向主拖动电路和轿厢开关门电路,其中电梯垂直方向主拖动电路由变频器控制的三相异步电动机作为拖动动力源,轿厢开关门电路则采用易于控制的直流电动机作为拖动动力源;电气控制系统由众多呼叫按钮、指示灯、LED 7段数码管和光电编码盘、脉冲计数电路、变频器以及控制部分的核心器件PLC等组成。PLC集信号采集、信号输出和逻辑控制于一体,与电梯电力拖动系统一起实现了电梯控制的所有功能。电梯控制系统硬件结构框图见图1。

 

图1 电梯控制系统硬件结构框图

  电梯的软件设计由若干个功能模块组成,每个功能模块由相应子程序实现,再由主程序分别调用子程序。主要包括以下几个子程序:楼层检测、指示灯显示、手动/自动开关门控制、轿厢内外呼梯记录、呼梯优先级判断、变频器控制、电梯运行控制。其中最关键部分包括两点:一是对多个呼梯信号进行优先级判断,根据顺向最近优先响应、逆向最远优先响应的原则实现电梯正确响应呼梯;二是准确进行楼层检测,动态判断电梯所在楼层、换速及平层位置(由于篇幅限制,具体程序不再给出)。

2.2  电梯控制系统脉冲选层控制原理

2.2.1  利用脉冲计数实现电梯位移控制

将一增量式光电编码盘[2]与电机同轴安装,电梯上下运行时,码盘以与电机同样的角速度转动,产生A ,B 两路相位相差90°的脉冲,通过判断A ,B 的超前滞后关系确定电梯运行方向。每个脉冲对应井道中电梯所走的平均距离l 及电梯每层对应的平均脉冲数N 计算如下:

  式中:D为限速器绳轮直径,为28.5mm;P为码盘旋转一周对应的脉冲值,为1200p(p为脉冲单位);L为电梯平均每层距离,为160mm。将D , P , L 分别代入式(1)、式(2)中,可计算得l≈0.0746 mm/p,N≈2145p。

  电梯全程的每一个位置对应一个脉冲计数值,10层全部脉冲值(包括顶层和底层的平层位置到上下限位开关之间的距离所对应的脉冲值)约为20149p,根据电梯各个位置对应的位移和每个脉冲对应井道中电梯所走的平均距离l可以计算出相应的脉冲数,通过比较判断所记录的脉冲数就可实现电梯的位移闭环控制。由l的值可以看出,采用脉冲计数方式实现电梯的位移控制可以得到很高的控制精度。

2.2.2  脉冲计数的两种实现方式

  通过计算输入脉冲数检测电梯轿厢位置,可以有2种计数方式:绝对计数方式和相对计数方式。绝对计数指采用绝对坐标累计所有楼层脉冲数,每一层都对应唯一的脉冲数,这样会占用较多的存储空间。相对计数方式指采用相对坐标进行计数,每次从平层点开始计数到下一平层点,然后计数器复位,每一层均从该层层高对应脉冲值开始加/减计数。采取这种方式可以节省存储空间,但是可能出现乱层现象,需要在每一层的平层处增加传感器等硬件发出复位信号或通过编制程序以避免乱层现象发生。由于电梯加工精度不高,每一楼层对应脉冲数可能不同,综合考虑后本套模拟电梯控制系统采用了绝对计数方式。

3  系统实现位移控制的分析

3.1  CompactLogix系列控制器的工作方式及编程环境

  本系统是由1个CPU模块、1个电源模块、3个数字量输入模块、4个数字量输出模块和1个PowerFlex 70变频器构成的电梯控制系统。其中PLC采用CompactLogix L31控制器,它属于CompactLogix系列,是Rockwell目前主推的Logix控制平台[3,4]中的一款中型PLC。其具体工作方式[46]分析如下。

  (1) 控制器采用具有优先级的实时多任务操作系统,支持8个可组态任务。其中有一个连续性任务,其他为周期性任务或事件性任务(优先级为1~15,数字小的优先级高),每个任务又包括若干程序以实现逻辑控制。

  (2) Logix系统中设备之间通过“连接(connection)”或者“非连接的信息交换(unconnected message)”两种方式进行数据通讯。CompactLogix系统使用“连接”传送I/O数据,对于本地I/O模块,控制器都会和每个模块分别建立一个直接连接,即控制器与I/O模块之间建立一种实时数据传送链路。

  (3) 系统本地框架中的数字量输入模块采取多信道广播数据(循环数据交换)的工作方式。由RPI(requested packet interval)指定模块多信道广播(multicast)其数据的速率,如果在RPI时间帧内没有改变状态COS(change of state)发生,模块就按RPI指定的速率来多信道广播数据,否则将改变后的状态按RPI发送。对于系统本地框架中的数字量输出模块,控制器会分别按RPI和在任务执行结束时将数据发送到相应模块。RPI设定值范围为1~750ms,但它会受系统本地框架中扩展I/O模块数量的影响,一般情况下,1~4个模块RPI最快为1.0 ms,5~16个模块RPI最快为1.5ms,17~30个模块RPI最快为2.0ms。

  (4) 控制器使用一个优先级为7的任务专门用来处理I/O数据。这个周期性任务按RPI执行,只有优先级高于7的任务方可中断处理I/O数据。即I/O的更新同逻辑的执行过程异步进行,这便于应用系统尽可能收到更新信息。CompactLogix系列控制器的编程环境采用RSLogix 5000[7]

3.2 控制系统的通讯方式及软件组态

  CompactLogix L31控制器通过RS232串行口、采用DF1全双工通讯协议实现控制器与PC 的点对点通讯。连接好硬件线路后,利用RSLinx软件来对链接工作站和控制器的网络组态通讯驱动程序,实现控制器与PC的通讯。可以通过RSLinx的自动组态功能实现控制器型号、波特率、校验、停止位、错误检测等的自动组态。本系统中对于CompactLogix L31控制器所带的两个RS232串行口,采用其中的完全隔离端口(通道0),如果采用控制器的非隔离端口(通道1),需要在控制器与终端设备之间安装隔离器[5,6]

3.3 变频器的组态及PLC控制

  通过变频器的LCD HIM(液晶显示人机接口)进行相关参数的组态,变频器的组态包括:组态变频器的输入电压,设置电动机的额定数据(额定电压、额定电流、额定转速、额定功率等)及加/减速的斜坡时间,优化电机转矩,设置变频器的最大/小频率及七组预置频率值,设置变频器的方向模式等。

  变频器的PLC控制是通过PLC的输出模块控制变频器的数字IO端子块实现的。PLC的数字量输出模块与变频器的数字IO端子块的接线如图2所示。图2中,PLC数字量输出模块1769-OB16的电源端+VDC接24V直流电源的正极、DC COM端接24V直流电源的负极并与PowerFlex 70变频器数字I/O端子块的8号接线端(数字输入公共端)短接。PLC数字量输出模块的OUT0~OUT5输出接线端分别与变频器数字I/O端子块的1#~6#接线端连接,实现PLC对变频器的控制。图2中,变频器数字I/O端子块1#~6#接线端对应的参数名称和组态信息如表1所示。PLC数字量输出模块的OUT3、OUT4、OUT5(与变频器数字I/O端子块的4、5、6接线端相对应)输出状态的不同组合对应七组预置频率中的不同值,对应关系如表2所示。这样PLC可以根据轿厢当前楼层与要达到的楼层间的距离向变频器发送不同的频率命令。

[1] [2]  下一页


本文关键字:暂无联系方式电梯应用领域 - 电梯