您当前的位置:五五电子网电子知识电子学习基础知识电路基础知识双极发射极跟随器:具有双通道反馈的RISO 正文
双极发射极跟随器:具有双通道反馈的RISO

双极发射极跟随器:具有双通道反馈的RISO

点击数:7129 次   录入时间:03-04 11:37:43   整理:http://www.55dianzi.com   电路基础知识

      我们选择用于分析具有双通道反馈的RISO的双极发射极跟随器为OPA177,具体情况请参阅图1。OPA177为一款低漂移、低输入失调电压运算放大器,其能在±3~±15V的电压范围内工作。

图1:双极发射极跟随器运算放大器的技术规范。 图1:双极发射极跟随器运算放大器的技术规范。

      图2显示了一款典型的双极发射极跟随器的拓扑结构。请注意,用于Vo的正负输出驱动均为双极发射极跟随器。目前,包含“等效电路图”(表明运算放大器内部所用输出级的拓扑结构)的产品说明书并不多见。为此,只能通过厂商的内部资料,我们才能确切了解输出级的结构。

图1:典型双极发射极跟随器运算放大器的拓扑结构。 图2:典型双极发射极跟随器运算放大器的拓扑结构。

      我们用于分析双极发射极跟随器的具有双通道反馈的RISO电路如图3所示。FB#1通过RF直接向负载(CL)提供反馈,从而促使Vout与VREF相等。FB#2通过CF提供了第二条反馈通道(在高频率时占支配地位),从而确保了运行的稳定性。Riso将FB#1和FB#2相互之间隔离开来。需要注意的是,在目前用于稳定电容性负载的许多技术中,我们采用了经改进的Aol方法(当采用这种方法时,运算放大器的输出阻抗和电容性负载改变了运算放大器的Aol曲线)。在改变后的Aol曲线中,我们在图上标出1/,这将有助于电路的稳定运行。当采用具有双通道反馈的RISO时,我们发现,更易于维持运算放大器Aol曲线不变并在图上标出FB#1 1/β和FB#2 1/β曲线。于是,我们将运用叠加的方法,来获得一条最终(net)的1/B&epSILon;τα曲线,这样,当在运算放大器的Aol曲线上进行标绘时,我们就能够轻松地生成一款针对这种电容性负载稳定性问题的解决方案。

图3:具有双通道反馈的RISO:发射极跟随器。 图3:具有双通道反馈的RISO:发射极跟随器。

      一旦我们选择了运算放大器,如图4所示的Aol测试电路就为开展稳定性分析提供了前提基础。Aol曲线可从产品说明书中获取,或者从如图所示的Tina SPICE仿真中测量得出。Aol测试电路采用双电源供电,即使Vout近乎为零伏,我们仍可测量空载时的Aol曲线,而且输入共模电压的要求易于满足。R2和R1以及LT为低通滤波器函数提供了一条AC通道,从而允许我们在反馈通道中进行DC短路和AC开路操作。务必提请注意的是,在进行AC分析前,SPICE必须开展DC闭环分析,以找到电路的工作点。另外,R2和R1以及CT为高通滤波器函数提供了一条AC通道,这样,使得我们能将DC开路和AC短路一起并入输入端。LT和CT按大数值等级选用,以确保其在各种相关的AC频率时,电路短路和开路情况下的正常运行。

图4:Aol测试示意图:发射极跟随器。 图4:Aol测试示意图:发射极跟随器。 图5:Aol测试结果:发射极跟随器。 图5:Aol测试结果:发射极跟随器。

    从TinaSPICE仿真测量得出的OPA177 Aol曲线如图5所示。测量得出的单位增益带宽为607.2kHz。

      现在,我们必须测量如图6所示的Zo(小信号AC开环输出阻抗)。该Tina SPICE测试电路将测试空载OPA177的Zo。R2和R1以及LT为低通滤波器函数提供了一条AC通道,这样,使得我们能将DC短路和AC开路一起并入反馈电路。DC工作点在输出端显示为接近零伏,这也就是说,OPA177没有电流流入或流出。此时,通过运用1Apk AC电流生成器(我们能够扫视10mHz至1MHz的AC频率范围),Zo的测量工作就可以轻松完成。最后,得出测量结果Zo=Vout(如果将测量结果的单位从dB转换为线性或对数,那么Vout也将为以欧姆为单位的Zo)。

  图6:空载Zo测试电路:发射极跟随器。

    从图7中,我们可以看出,OPA177 Zo是双极发射极跟随器输出级所独有的特征,而且这种输出级的Ro在OPA177单位增益带宽之内,是控制输出阻抗的专门组件。OPA177的Ro为60欧姆。

图7:开环输出阻抗:发射极跟随器。 图8:Zo外部模型:发射极跟随器。

      为了使1/β分析的情况包括在Zo与Riso、CL、CF以及RF之间相互作用的影响结果内,我们需将Zo从运算放大器的宏模型中分离出来,以便于弄清楚电路中所需的节点。这种构思如图8所示。U1将提供了产品说明书中的Aol曲线,并从Riso、CL、CF以及RF的各种影响中得到缓冲。

图9:具有双通道反馈的RISO:发射极跟随器Zo外部模型详图:发射极跟随器。

www.55dianzi.com

    通过如图9所示的Zo外部模型,我们能够测量Zo与Riso、CL、RF以及CF之间相互作用对1/β的影响。在Zo外部模型中,设置Ro=Ro OPA177,实际测量值为60欧姆。压控电压源VCV1将运算放大器宏模型U1从Ro、Riso、CL、CF以及RF中隔离开来。将VCV1设置为x1,以确保产品说明书中的Aol增益不变。由于我们要在稳定性状况最糟的情况下(只存在CL以及我们计算得出的空载Zo[此时Ro=60欧姆])分析这种电路,因此,务必排除各种大的DC负载。VOA是一个与运算放大器相连的内部节点,在实际工作中,我们无法实现对这种节点的测量。同时,许多SPICE宏模型上的这种内部节点接入,也并非易事。对1/β进行分析(相对于VOA),已涵盖了Ro、Riso、CL、CF以及RF的影响。如果未采用Zo外部模型,SPICE中的最终稳定性仿真就无法标绘出1/β的曲线;但是,如果采用Zo外部模型,则可标绘出环路增益的曲线以确认我们分析的正确性。

      首先,我们要分析如图10所示的FB#1。请注意,由于我们只分析FB#1,所以CF可视为处于开路状态。接下来,我们将分析FB#2。然后,通过采用叠加的方法,将两条反馈通道合并在一起,求取最终的1/β。分析结果如图上所示,有关的公式推导和具体细节,请参阅下一张图(图11)。我们发现,当fzx=183.57Hz时,FB#1 1/β曲线的增益为零。低频1/β值为1。如欲获得该增益,那么低频1/β值应大于1。

图10:FB#1分析:发射极跟随器。 图11:FB#1 1/β公式的推导:发射极跟随器。 图11:FB#1 1/β公式的推导:发射极跟随器。

      FB#1β的公式推导如图11左侧所示。由于1/β是β的倒数,所以FB#2 1 1/β的计算结果可以轻而易举的被推导出来,具体推导过程,请参阅图11右侧。从图中我们还发现,在β推导过程中的pole,FPx变成了1/β推导过程中的zero,fzx。 我们将采用如图12所示的电路来开展AC分析:通过Tina SPICE,求取FB#1的1/β,OPA177的Aol以及只采用FB#1电路的环路增益。正因为如此,所以我们将CF从图中除去。

    FB#1 1/β的结果标示在图13中的OPA177 Aol曲线上。在环路增益为零的fcl处,我们发现,接近速率为40dB/decade:[(Aol曲线上的-20dB/decade)-(FB#1 1/β曲线上的+20dB/decade)=-40dB/decade接近速率)]。

[1] [2] [3] [4] [5] [6]  下一页


本文关键字:通道  电路基础知识电子学习 - 基础知识 - 电路基础知识

《双极发射极跟随器:具有双通道反馈的RISO》相关文章>>>