您当前的位置:五五电子网电子知识单元电路接口电路音频系统应用中的“POP”噪声以其常用解决方法(图) 正文
音频系统应用中的“POP”噪声以其常用解决方法(图)

音频系统应用中的“POP”噪声以其常用解决方法(图)

点击数:7139 次   录入时间:03-04 11:59:53   整理:http://www.55dianzi.com   接口电路

“POP”噪声是指音频器件在上电、断电瞬间以及上电稳定后,各种操作带来的瞬态冲击所产生的爆破声。本文将讨论几种常用的解决方法及其工作原理,这些方法针对具体的集成电路具有各自特点,应用时需要根据实际情况综合考虑。

  

  图1:单端模式与桥式模式输出电路示意图。

   本文提到的音频系统是指音频半导体器件,包括音频数模转换器、模数转换器、音频放大器等的应用系统。产生“POP”噪声的瞬态冲击通常是一种很窄的尖脉冲,用傅立叶分析展开后,其频谱分量很丰富,且在频域内的能量分布相对平均。本文下面讨论的几种“POP”噪声解决方法的目的,就是要降低20Hz~20kHz范围内的谐波分量。对绝大多数人而言,如果信号的峰峰值电压小于10mV,就已经听不见了。

  桥式(BTL)输出与单端(SE)输出

  

  图2:桥式模式与单端模式输出的“POP”噪声。

   桥式结构输出相对单端模式输出而言有很多优点,比如桥式模式可在相同的电源电压Vdd条件下,输出较高的电压VOBTL=2*VOSE,在相同的负载条件下输出更大的功率。图1为这两种输出电路的示意图。

  需要指出的是,桥式模式能有效抑制共模噪声。输出功率相同时,桥式模式的噪声明显小于单端模式的噪声(如图2所示,蓝色通道接负载两端,绿色通道接电源Vdd)。这是因为相同的冲击会同时出现在桥式输出结构的“+”、“-”两端,并通过负载后相互抵消,不对扬声器做功,因而不会发出“POP”声。这种结构对于上电、掉电噪声以及操作噪声都有很好的抑制作用。

  

  图3:桥式结构的两种电路形式。

  常见的桥式结构有两种,它们对抑制“POP”声的能力有细微差别。图3左边的电路是两个放大单元并联连接,同一个输入信号分别进入两个放大单元AMP1、AMP2的“+”、“-”输入端,而且使它们的放大倍数保持相同、相位保持相反(相差180度)。在这里,AMP1单元网络的增益GAINUP=-R9/R8=-2,AMP2单元网络的增益GAINDOWN=1+R11/R12=2。单个电阻的精度误差通常为±30%,但在同一个芯片内,这种偏差朝同一个方向,如果设计恰当,电阻比值的精度可以保证在±1%以内。AMP1、AMP2的DC参数也同样朝同一个方向偏差,所以在“+”、“-”输出端可以很好地抵消共模信号。

  

  图4:OCL输出结构。

   图3右边的电路则采用级联形式,前一级的输出信号进入下一级的“-”输入端,AMP4单元网络的增益GAINBACK=-R14/R13=-1。事实上,AMP3的输出经过AMP4反向后会有一定的延时,在“+”、“-”输出端并不能完全抵消。AMP3的失调电压等支流误差信号会在AMP4中复制,并与AMP4的失调电压一起送到“+”端,而无法与“-”端完全抵消。因此这种结构抑制“POP”声的效果略差一些,通常用在小功率器件中。

  除此之外,还有一种结构也能有效抑制共模噪声,那就是无输出耦合电容(OCL)结构(见图4)。该结构与桥式结构非常类似,在输出端将直流共模电压抵消掉,只有交流信号对负载作功。与桥式结构一样,OCL结构由于省去了耦合电容,可给音频系统带来另外一个好处,即系统的频率响应可以延伸到很低的范围,后面将对此作详细介绍。

  增大VBIAS的滤波电容

  

  图5:单端模式电路的“POP”噪声与Vbias电压的仿真波形。

   音频集成电路通常都有一个管脚叫做Vbias,或者Vref、Vmid、Vsvr、bypass等,它是内部直流基准电压,若要内部电路能工作,这个偏置电压必须建立起来。实际应用时,该管脚通常外接一个旁路电解电容到地,该电容起滤除噪声的作用。对于使用正电压的单电源系统来说,当系统工作稳定时,基准电压值约等于Vdd/2。增大这个电容的容值能抑制“POP”噪声。当芯片上电或从待机状态切换到工作状态时,直流偏置电压开始建立,从0逐渐升高,并对Vbias滤波电容充电。经过一定时间后,电压上升到Vdd/2,此时芯片就可以工作了,输出的音频信号基于这个直流电压上下摆动。同样,当芯片掉电或进入待机状态时,滤波电容放电,偏置电压开始下降,从Vdd/2下降到0。实验证明,芯片上电、掉电时的“POP”声就是由偏置电压的瞬间跳变引起的。

  图5是仿真结果,红线代表Vbias电压,蓝线代表单端模式的负载端输出(在耦合电容之后,如图1的左边电路,Co=220uF,RL=16Ω)。如果Vbias跳变得缓慢,“POP”冲击就会减小(如图6所示),此时的冲击脉冲变宽,幅度有所下降,“POP”声也变小了。使Vbias的上升、下降过程变缓,就可增加基准电压的跳变延时。假定滤波电容的充放电电流是个常数,可把这个过程简化成一阶RC模型,根据公式(1),可计算出电压从0上升到Vbias/2,或者从Vbias/2下降到0所需的时间。

  tdalay=0.69*R*C (1)

  
  图6:Vbias跳变变缓后,“POP”噪声的仿真波形。

   因此,增大Vbias的滤波电容可以减缓直流基准电压的上升、下降速度,起到减少“POP”噪声的作用。图7是增大电容后,基准电压跳变变缓的效果,其中红线代表电源电压Vdd,蓝线代表Vbias电压(假设Vdd=5.0V,Vbias=2.5V)。

  有些音频芯片集成了一个固定的延时电路单元,上电后需要经过一段固定延时,Vbias才开始缓慢上升到稳定状态,此时从低电压到高电压的上升延时时间为tpLH。当芯片掉电时,集成电路的实现方式使其很难再延时一段时间才开始下降,但是仍可以增大从高电压到低电压的下降延时时间tpHL,以达到更好的抑制效果,此时只需使放电时的等效电阻大于充电时的等效电阻即可。图8显示了MAX9890 的Vbias变化时序。

  
  图7:耦合电容不同时的“POP”冲击波形。

   tpLH=0.69*Rcharge*CBIAS (2)

  tpHL=0.69*Rdischarge*CBIAS (3)

  需要注意的是,滤波电容过大会使芯片的建立时间变长,使人感觉声音“久久”没有输出。另外,电容过大还会使音频系统的重要指标——总谐波失真+噪声(THD+N)变差。这里不解释详细原因,取值时请参考相应的数据手册并进行折衷选择。

  减小输出端的耦合电容

  对于单端的输出结构,在单电源系统中通常需要接一个电容(如图1所示)。这个电容的作用是:(1)隔断直流基准电压Vbias。如果没有隔直,直流电压会直接流过后面的扬声器线圈,使纸盆平衡位置偏向一端,若Vbias过大还可能损坏线圈。(2)耦合交流音频信号。它与扬声器负载构成了一阶高通滤波器(HPF),根据公式(4),电容的大小与低频处的截止频率fc有关。

  fc=1/(2π*RL*Co) (4)

  
  图8:MAX9890的Vbias变化时序。

   电容Co越大,截止频率fc则越低,这意味着更低的频率也可耦合到负载上去(见图9)。

  减小Co的容值可使“POP”冲击的幅度变小、脉冲宽度变窄。由于“POP”冲击的频谱能量大都在高频,减小Co的容值同样可以减少可闻噪声。图10显示了电容Co分别为10uF、47uF、100uF、220uF时的“POP”冲击情况。可以看出,当Co减小到一定值后,再减小该值,噪声抑制效果提高得很少。但根据公式(4),减少电容值可明显提高截止频率fc(如图9所示),因此设计工程师必须权衡,作出一个折衷选择。

  当然,有的芯片具有低音增强特性,可在外部反馈回路中通过增加一个零点的方法,来使低频部分的增益大于通带内的增益。比如对于LM4838器件来说,调整电容Cbs的大小就可以调整增益拐点在频率上的位置(见图11)。

  用恰当的操作来抑制“POP”噪声

  
  图9:不同耦合电容下的频率响应特性(RL=16Ω)。 

  在音频功率放大器芯片上常常有MUTE、STB(Standby)管脚。当MUTE信号有效时,芯片内部将输入端短接到地,其它电路保持正常工作;而当STB信号有效时,则关断音频电路静态时最耗电的Vbias偏置电路。对采用CMOS工艺的音频电路而言,关断Vbias偏置电路后的静态电流主要是MOS管的亚阈值电流,即MOS管的漏电流(微安级),管子的阈值电压越小,此电流值越大。由以上讨论可知,若单独使用STB,由于Vbias的瞬变,难免会引起“POP”噪声。如果将这两个管脚按一定顺序正确使用,则可有效地抑制开关机噪声(见图12)。芯片上电时,先使MUTE、STB有效,待电源稳定后,先释放STB,再释放MUTE。掉电操作时,在准备掉电之前先使MUTE有效,然后再使STB有效,直到Vdd变为0。这是因为通常由MUTE操作引起的“POP” 噪声要小于STB操作引起的“POP” 噪声。

[1] [2]  下一页


本文关键字:暂无联系方式接口电路单元电路 - 接口电路