2 末端效应器控制器可靠性及长寿命设计
在第一章节中末端效应器的详细设计中控制器的设计包括任务级执行级控制方案、具体软硬件实现中元器件选择及实现方案等都是以高可靠性为中心进行分析和设计的。下面主要从软硬件的角度考虑故障的处理方法,还有容错控制策略的设计。
2.1 软硬件可靠性保证
2.1.1 硬件可靠性保证
解决可靠性问题最主要的方法是执行器故障诊断和处理。常见电机故障有:
1)电机过载、过流。由于系统的电流比较小,故可以采用主回路串联采样电阻的方法进行过流检测。定子电流经过电阻之后转变成电压信号,在此串入小电阻,小电阻两端的电压经过放大隔离后送入A/D单元,通过主控制器的软件编程或逻辑实现对电机的过载保护。
2)电机过速。
3)驱动器非正常复位。本系统采用了硬件冗余,设计了急停电路,使系统停止运行。
另外光电编码器等传感部件也可能发生故障。在系统运行时可能出现的故障有:
1)数据传输错误。诊断办法是采用奇偶校验法判别,然后用线性外推法给出当前传感器数据;
2)数据采集错误。这种故障可能造成控制力矩的波动,诊断采用野点剔除的办法加以剔除,然后用线性外推法给出当前传感器数据。
2.1.2 软件可靠性保证
1)系统启动自检。在启动系统时,必须检测元器件是否正常工作。
2)系统故障报警和处理。当有故障发生时,软件能检测出该故障,并诊断其故障类型,从而做出必要的处理。
3)事故急停处理。当一旦有事故发生时,系统应该立即关闭,力求将事故对系统的破坏降低到最低程度。
2.2 高可靠性独立控制系统的合理容错控制策略设计
空间站远程遥操作机械臂SSRMS(SPACe Station Remote Manipulator System)、欧洲遥操作机械臂ERA(European RobotIC Arm)、日本实验舱遥操作机械臂JEMRMS(Japanese Experimental Module Remote ManipulatorSystem)在设计和运行过程中都要求机械臂系统至少能够容忍两次故障的发生。这对末端效应器控制系统也提出了一个新的要求。控制系统的容错设计及故障检测与诊断是提高航天器的可靠性的有效途径。
末端效应器控制系统除了提高单一控制系统的高可靠性之外,考虑采用控制系统的容错也是提高可靠性的一个合理的选择。同时对于一个精密的运动控制系统来说,系统的容错性是调试和运行时需要考虑的功能完整性问题。对于控制系统的容错设计主要考虑以下两方面的要素:
1)需要结合具体的任务,选择合适的传感器、执行器和控制器备份策略:
2)需要考虑与之相配合的故障诊断和诊断方法。
对于传感器、执行器和控制器备份方案,本系统了采用类似于ERA的关节控制系统,即采用双绕组永磁同步电机构建相互独立的2套驱动子系统,但是由于2套驱动系统工作在冷备份模式,容错能力不高,且没有充分利用冗余备份的传感器资源,所以为了提高容错能力,本系统选择了双绕组余度电机工作在热备份模式。
由于末端效应器机械机构具有模型非线性、摩擦非线性和负载变动的自适应等因素,本系统的故障检测和故障诊断主要是基于传感器冗余信息的故障检测方法,主要通过位置传感器、力传感器的信号来推断系统的状态,进而进行故障检测。位置信息的配置主要包括电机数字霍尔传感器、电机旋转变压器等多级容错备份和故障检测。力传感器的故障通过计算电机位置信息和参考力进行比较来判断。
结合实际情况,本控制系统的电机驱动控制部分容错设计主要采用了双绕组余度电机工作在热备份模式。相应的故障检测方法为基于传感器冗余信息的故障检测方法。具体的冗余切换逻辑结构如图5所示。

3 结论
末端效应器机械机构在空间环境中稳定可靠性的工作,作为其核心的电机控制系统的长期稳定可靠的工作就显得尤为重要。因此文中首先考虑完成任务的运动规划问题,然后考虑了控制系统方式及其软硬件实现的具体要求.来实现高可靠性独立控制系统的设计。并且在高可靠性独立控制系统的基础上,还设计了合理的容错控制策略。此系统经过实验,达到了设计要求。
上一页 [1] [2]
本文关键字:控制系统 可靠性 科研成果,电子知识资料 - 科研成果