您当前的位置:五五电子网电子知识元器件介绍元器件特点及应用自复性保险丝元件介绍 正文
自复性保险丝元件介绍

自复性保险丝元件介绍

点击数:7186 次   录入时间:03-04 11:45:41   整理:http://www.55dianzi.com   元器件特点及应用

      自复性保险丝元件有多种系列产品,其产品特性各不相同。以常用的RXE系列元件为例,其20℃时的电气特性如表1所示。
      表1 RXE系列元件20℃时的电气特性


表1中各符号的含义如下:
IH:20℃环境温度下的最大工作电流
IT:20℃环境温度下PolySwitch元件启动保护的最小电流
Vmax:PolySwitch元件的最大工作电压
Imax:PolySwitch元件能承受的最大电流
PDMAx:PolySwitch元件动作状态下的最大消耗功率
Rmax:PolySwitch元件未动作前的初始最大阻值
Rmin:PolySwitch元件未动作前的初始最小阻值
由表1可知,该系列元件所能承受的最大电流为40安培,故障时启动保护的最小电流是最大工作电流的2倍。

       RXE系列PolySwitch元件20℃时的动作保护特性曲线见图1。其中横坐标表示故障电流,单位为安培,纵坐标表示动作时间,单位为秒。两个坐标轴均为对数坐标。图中每一条曲线对应一个型号的元件,构成该系列元件的动作保护特性曲线簇。表2为图1中曲线标号与元件型号的对照表。


图1 RXE系列元件20℃时的动作保护特性曲线

       在图1所示的对数坐标系中,每一条曲线都可看作由弯曲部分和直线部分连接而成,两部分的临界点位置随元件型号的不同而不同。由于各型号元件曲线的变化趋势基本相同,建立数学模型的方法也相同。
表2 曲线标号与元件型号对照表

       数学模型的建立

       在图1所示的坐标系中,PolySwitch元件动作保护特性曲线由弯曲部分和直线部分连接而成,可分别建立其数学模型。以M=RXE160的曲线为例,建立数学模型的具体步骤如下。

       确定临界点位置

       对图1中的曲线进行测量,可得到PolySwitch元件动作保护特性曲线弯曲部分和直线部分的临界点位置。对M=RXE160的曲线,测得的临界点位置约为I=4.3A。



www.55dianzi.com

a=813,b=22.54,

代入(1)式,可得直线部分的数学公式:

曲线部分

由于PolySwitch元件具有PTC效应,其动作保护特性曲线部分的数学模型可参考PTC器件的阻温特性来建立。该类特性的数学模型可采用幂函数或对数函数的形式。设其数学公式具有如下形式;


式中t0,I0,b均为常数。由图1曲线部分曲线取若干特殊点,经计算机进行数学处理,得到t0,I0,b的具体数值:

t0=-38.93,I0=4.42,b=-1.83,

代入(3)式,可得曲线部分的数学公式:


 (2)式和(4)式共同组成RXE160元件的动作保护特性数学模型。两条曲线在临界点位置平滑连接。

实验结果

为验证RXE160元件动作保护特性数学模型的正确性,将RXE160元件接入直流电源保护电路中进行实际测试,得到实验数据如表3所示。

表3 实验数据

  
将实验数据与数学模型曲线绘制在同一坐标系中,如图2所示。图中的曲线为根据(2)式和(4)式绘制的仿真曲线,图中的点为实测数据点。为了方便比较,曲线的横轴、纵轴均采用了对数坐标,所用软件为Matlab6.0。比较图1和图2可知,该仿真曲线与PolySwitch元件手册中给出的动作保护特性曲线形态一致,且与实测数据点之间基本吻合。其他型号曲线的数学模型可按照上述方法分别建立。


图2 RXE160动作保护特性仿真曲线(20℃)

受元件特性曲线精度的限制,采用查表法选择PolySwitch元件使用不便,而且精度不高。本文根据PolySwitch元件动作保护特性的特点,建立了PolySwitch元件动作保护特性的数学模型,较好地解决了这一问题。实验表明,该仿真曲线与PolySwitch元件手册中给出的动作保护特性曲线形态一致,实测数据与根据数学模型绘制的曲线基本吻合




本文关键字:保险丝  元器件特点及应用元器件介绍 - 元器件特点及应用

上一篇:三端稳压器应用

《自复性保险丝元件介绍》相关文章>>>