您当前的位置:五五电子网电子知识通信技术通信基站-中继TI 高性能LTE物理层解决方案 正文
TI 高性能LTE物理层解决方案

TI 高性能LTE物理层解决方案

点击数:7530 次   录入时间:03-04 11:40:29   整理:http://www.55dianzi.com   通信基站-中继

第三代Turbo 编码器协处理器(TCP3e)  是一种可对LTE Turbo 代码进行编码以实现下行链路处理的可编程外设。TCP3e 的输入为信息位,而输出则为已编码的系统化校验位。

其能够支持基于编码模块的CRC、Turbo 编码及Turbo 交错表生成。TCP3e 能以150 Mbps 的下行链路吞吐量速率对每秒450 Mbycles  的CPU 处理减轻负担。TCI6618 具有4 个TCP3e 协处理器,总吞吐量高达2572 Mbps。

快速傅里叶变换协处理器(FFTC)是一款与DSP内核松散耦合的加速器。可将其连接至TeraNet并使用多内核导航器输入、输出需要FFT功能的分组。FFTC 具有循环前缀可插拔特性,能够对其进行编程以便在分组数据的开始部分忽略或添加样本;这允许在无需使用软件对循环前缀进行处理的情况下实现天线接口与FFTC 之间的无缝连接。此外, FFTC 也可根据LTE 要求对输入数据进行频率切换。以下列举了在LTE 中使用FFTC 的应用

2x2 MIMO 配置的LTE 系统中,该FFTC 集群可减少超过1.6 GHz  的DSP  内核处理开销。换句 话说,其可为SoC 节省比一个完整DSP 内核还多的资源。

瑞克搜索加速器(RSA) 可用于LTE 编码块解码。TCI6618 拥有两个与两个DSP  内核中的任一一个都能紧密配合的RSA 。RSA 可为相关性和搜索算法提供硬件加速,允许通过物理上行共享信道(PUSCH) 解码高效实施上行控制信息(UCI) 。使用RSA 可为基于PUSCH 解码算法的UCI 节省超过1GHz 的DSP 处理资源。

TCI6618 第二代天线接口(AIF2) 是一个专有外设模块,可在上下行基带DSP 内核与高 速串行接口(连接至数字无线电广播前端)之间支持基带同相与正交(IQ)  数据的传输。AIF2 可支持LTE 的频分多路复用(FDD)、时分多路复用(TDD)、通用公共无线电广播接口(CPRI) 以及开放式基站架构发起组织(OBSAI) 协议。AIF2 则能支持6 个链路,其中每个链路均带 一个6 GHz 的SERDES 和每链路64 个最大天线载波。

AIF2  内置多内核导航器,并能直接与FFTC 连接,从而为LTE 系统提供了低时延的天线流量。此外,AIF2 也具有用于帧时序和同步的可编程无线电广播定时器,以支持多种标准。

其能够提供12 Gbps 的最大入口带宽和12 Gbps 的最大出口带宽。网络协处理器 网络协处理器可提供主要用于LTE L2 处理的以太网分组加速和安全加速功能。其内置CRC 引擎可用于实现LTE PHY 传输模块的CRC 计算。

高效 FFTC 前端数据分派– KeyStone 多内核架构可在AIF2 和FFTC 之间实现无缝接口,而无 需运行于DSP内核之上的软件的干预。此外,其还使用多内核导航器基础局端支持多内核负载均衡。

  AIF2 和FFTC 专为LTE OFDM 处理而精心优化。两者继续沿用多内核导航器的分组直接存储器存取(DMA)  引擎,从而能够在无需DSP  内核干预的情况下通过队列直接在AIF2 和FFTC 形成数据传输通道。

 图4阐述了如何在LTE 上行符号处理过程中采用多内核导航器来实现负载均衡、调度、系统分区以及存储器占用的减少。

  在该例中,可将4 个天线信号流馈送到FFTC 中,分区及调度信息被编程固化在FFTC 输入队列描述符中。每个内核均具有3 个专用的FFTC 输出队列,队列中具有使用多内核导航器以逐包方式重新分配到不同内核的所需天线及数据符号信息。

   通过使用多内核导航器队列描述符报头协议专用信息,可对FFTC 输出数据进行排序,以让一个队列接收FFTC 输出数据符号,另一个队列接收输出导频信号。第三个队列包含可中断内核以启动数据处理的符号数据。内核能够高效处理前端FFTC 数据而无需进行任何数据预处理开销。FFTC 通过将部分数据及导频符号路由到将执行信道估计以及均衡的每个内核来实现负载均衡。

4.jpg

图4 –利用多内核导航器实现负载均衡、调度以及系统分区

www.55dianzi.com

   通过为FFTC 输出数据采用多内核导航器队列,L2 使用多区段主机分组描述符的存储器空 间可节省下来。可将主符号前后的干扰保护音调存放在存储器段中,通过每次传输快速回收。仅将有用数据 (主符号)存储在L2  中以备后续处理。其结果是为FFTC 前端处理减少了50%  的存储器; 缓冲器使用量。图5; 阐述了如何采用多内核导航器队列链接的描述符来减少存储器的使用。

2
  高性能物理层解决方案 图5 使用多内核导航器分组队列减少存储器使用包含适用于BCP、FFTC、TCP3d、TCP3e、多内核导航器、 网络协处理器、增强型直接存储器接入(EDMA)  以及芯片支持库等的驱动器。其可实现即装即用的精彩用户体验,同时能够大幅缩短研发周期。

5.jpg

  采用TCI6618 的 TI 也提供LTE PHY 软件,从而能够为针对C66x  内核而高度优化的客户PUY 解决方案提供构LTE解决方案  建模块。BCP 可减轻整个比特处理以及硬件中PUCCH 格式2、2a 与2b 解码的负荷。LTE 库包括PUSCH 符号、PUCCH 格式1、1a 与1b 解码、PRACH 接收机处理和物理下行共享信道(PDSCH) 符号速率处理的相关软件。图6 显示了使用TI 具有TCI6618 加速器的LTE 库对下行 From L2 Modulation 处理高性能LTE 上行处理需要有效的CPU 周期来实现PUSCH 信道估计与均衡。根据天线数量,C66x 扩展指令集架构与浮点算术运算相对于C64x+ 架构而言可将MRC 均衡器的周期降低4 倍。由于具备浮点计算能力,诸如分块矩阵转置等更为高效的算法可用于实现同等性能p> 相对于MMSE MIMO 均衡器更为复杂的定点Cholesky 分解算法,其减少的周期数可达5 倍。

6.jpg

   BCP 提供的控制信道解码可大幅减少软件周期数,且能够比软件应用中的典型算法提供更高的性能。在某些情况下,这能够节省多达1.4 GHz  的DSP 处理主频,相当于节约了一个多DSP 内核。图7 显示了使用TCI6618 及其高度优化的LTE 库软件而进行的PUSCH 处理 处理

7.jpg

  此外,FFTC 也可用于信道估计以减轻DSP 处理负荷。在LTE  中,可基于嵌入在上行帧中的参考信号 (资源模块中第4 类信号)来执行信道估计。TI 的LTE 库软件可提供信道估计功能(在子帧中的每个数据承载资源组件中执行)。信道估计的第一阶段可利用FFTC 来构建频率平滑估计器。执行IDFT 需要将信道估计从频域向时域转换,并利用矩形窗口来截取时域信道带以获得时域信道。或作为备选方案,还可选定能够减少噪声的阈值。随后,执行DFT  可生成频域信道估计。信道估计的第二个阶段可通过对第一阶段估计结果的线性插值法/ 外插法,根据每个子载波进行计算。 图8 显示了PUSCH 信道估计处理进程。

8.jpg

图8除了可用于上行PRACH 处理中的各个阶段,也可将FFTC 用于PUSCH 信道频偏补偿和估计。

TCI6618 中的两个FFTC 加速器能够显著降低DSP  内核的LTE 信号处理负荷。通过充分利用 TI C66x DSP 内核上的LTE 库软件,和TCI6618 硬件加速器,我们可在同一TCI6618 器件中度集成物理上行共享信道(PUSCH)、物理上行控制信道(PUCCH)、物理下行共享信道(PDSCH)、 物理下行控制信道(PDCCH)  以及物理随机访问信道(PRACH) 通道的LTE PHY 处理。可支持两个20MHz  带宽区段的FDD LTE,以及2x2 个使用高级接收机算法获取的150 Mbps 下行和75 Mbps 上行吞吐带宽的MIMO。 多内核架构和无与伦比的TCI6618 系统、外设、加速器带宽及吞吐量使得低成本的LTE 移动宽带成为现实,同时也为市场带来了高性价比的LTE 解决方案。

结论 以TI 多年无线基站系统知识和业经验证具有卓越性能的技术为依托,TCI6618 是在此基础上持续创新的成果。TI KeyStone SoC 架构可为LTE 及其持续技术演进提供最高的吞吐量以及符合未来要求的架构。4 款同时集成了定点与浮点功能的高性能DSP 内核可为LTE PHY处理提供业界功能最强大的内核。丰富系列的硬件加速器不仅可减少LTE 系统时延,而且还能完全释放CPU  资源,从而实现最佳的LTE 系统性能以及独具竞争优势的差异化功能。TMS320TCI6618 可提供结合了业界开发生态系统且包含全面优化型LTE PHY库软件的 最稳健硬件平台。平台开发软件可大幅加速开发进程,以确保为客户提供业界一流的LTE PHY 解决方案。



上一页  [1] [2] 


本文关键字:解决方案  通信基站-中继通信技术 - 通信基站-中继

《TI 高性能LTE物理层解决方案》相关文章>>>