另外,炉内的床料是大量具有一定粒经分布的颗粒组成,其稳定性决定了锅炉燃烧的稳定性,因此,在运行中锅炉排渣应采取连续或半连续排渣的运行方式,即勤排少排原则,这样可保持床内料层稳定,防止有效循环颗粒的流失,以保证锅炉的燃烧稳定性,同时锅炉的燃烧经济性也得到大幅提高(见表4)。
3.2.2 低氧量燃烧措施在循环流化床锅炉运行初期,对其燃烧控制经验不足,对氧量的控制大多沿袭传统煤粉炉的燃烧经验及运行设计说明书,采用了较大的过量空气系数,氧量O
2控制值在4-6%,引起一系列不利影响,如:磨损大、床温低、飞灰大、风机电耗大等。经过认真分析及总结经验,打破固定思维,考虑到循环流化床锅炉炉膛的密封性好,漏风系数极小,氧量随烟气流向逐渐降低,与传统煤粉炉的氧量随烟气流向因漏风的增加而变大正好相反,因此降低氧量运行是可行且有利的,在经过多次运行分析对比,更加证实其正确性。在采用低氧量燃烧技术后,风量的减少使风机电耗降低;床温的提高使锅炉燃烧效率升高、飞灰含碳量降低;风速的降低使磨损减弱。因此低氧量燃烧技术的采用大大提高了锅炉的燃烧经济性(见表4)。
3.2.3 高炉膛压力燃烧措施为充分发挥循环流化床锅炉的优势,经充分论证考虑后,炉膛压力的控制先由试运初期的0±50 Pa改进为微正压运行,提高了其运行经济性。在经过长时间运行后,发现炉膛压力的控制可以更进一层,即将炉膛压力微正压运行改为+100~+200 Pa运行,或将其控制零点改为接近三级过热器的入口烟道处烟气压力,可以最大限度的发挥循环流化床锅炉的优势,又可充分避免其炉膛与尾部烟道的内、外漏风。提高炉膛压力运行的试验对比见下表3:表3 燃烧调整试验参数对照表序号项目单位调整前调整后备注1炉膛压力Pa-30+150上升2三过入口烟气压力Pa-590-420上升3给煤量T/h56.256.3未调整4蒸发量T/h460463先下降后上升5低温再热器壁温℃457.9/455.7456.4/453.6下降6一次风量Nm
3/h192265192156未调整7总风量Nm
3/h431536430426未调整8含氧量%4.1/5.04.1/3.93.4/4.53.5/3.4下降9引风机电流A95/8291/80下降10引风机转速rpm312/445294/425下降11床压Pa6.36.6上升12炉膛出口温度℃906909上升13分离器出口温度℃921922上升14一次风机电流A115/18115/118未变15二次风机电流A75/6774/66下降16水冷风室压力Pa10.310.5上升17排烟温度℃145.5145.4微降18三过入口烟温℃783784微升19省煤器入口烟温℃412412未变20上床温℃901911上升21中床温℃909916上升22下床温℃915919上升
说明:调整前,#3炉各参数稳定运行,将引风机负压自动调整目标值由-30 Pa改至+150 Pa总共上升180 Pa,其他参数未做任何调整,稳定运行30分钟后,从参数对比表中发现上升的参数有:蒸发量、床压、床温、分离器出口温度、炉膛出口温度、水冷风室压力;下降的参数有:低温再热器壁温、含氧量、引风机电流、引风机转速、二次风机电流、排烟温度、三过入口烟温。分析:
l 炉膛压力上升后,烟气在离开炉膛时灰粒子的扬析作用加强,一次风离开炉内密相区时的夹带作用增强,因此炉内内循环倍率升高,炉内的灰粒子浓度上升,其对炉内水冷壁面的传热作用加强,有利于提高炉内的热利用率。同时,灰粒子在炉内的停留时间延长,其燃尽程度得到提高,燃烧效率上升,飞灰可燃物下降;另外,飞出炉膛的灰粒子减少,也有利于降低飞灰可燃物。l 因在炉内煤燃烧后的热量不能及时带走,造成炉膛密相区的床温上升,煤的燃烧效率上升。同时,炉内密相区灰粒子之间的碰撞、磨损、爆裂作用因压力的上升而作用加强,因此灰粒子的燃烧效率上升,锅炉的底渣含碳量降低,锅炉效率上升。l 炉膛压力的上升,直接降低引风机的转速、引风机的电流下降,其电耗下降;二次风的流动阻力上升,二次风量稍有下降,造成二次风机电流下降,其电耗下降。l 烟气在炉内及尾部烟道的流动速度降低,对受热面的磨损下降。l 在尾部烟道内,因烟气流速的降低,其对流传热作用减弱,但同时因进入尾部烟道的烟气温度升高,增强了对流传热作用,在二者共同作用下,排烟温度变化不明显,因此由排烟温度引起的排烟热损失变化不大,而由烟气量的减少带来的排烟热损失降低,因而总的排烟热损失是降低的。l 低温再热器的壁面温度降低,会引起再热器的减温水流量减少,机组的效率会上升。l 尾部烟道的压力下降后,可降低其漏风量,既降低磨损又降低引风机的电耗,既提高尾部烟道的热利用率又减少低温腐蚀的可能性(从省煤器入口处与尾部煤道底部处的氧量偏差约0.4%分析,其漏风量是比较可观的)。从以上分析可以看出:提高炉膛压力运行后,多数参数的变化有利于提高锅炉的燃烧效率,从降低主要指标分析:蒸发量的上升说明发电煤耗下降、锅炉效率上升;引风机电流、二次风机电流的下降说明厂用电率下降;从降低锅炉的燃烧热损失分析:排烟热损失、不完全燃烧热损失、飞灰可燃物的热损失、底渣含碳量的热损失等均是降低的。因此其优点是明显的,可以较大幅度的提高循流化床锅炉的运行经济性(见表4)。
3.2.4 优化煤粒粒径级配措施循环流床锅炉的床料内循环及外循环方式增加了灰粒(煤粒)在炉内停留时间,有利于煤粒燃尽,参与内循环的床料直径约为0.3~1mm,而参与外循环的床料直径约在0.09~0.3mm,它们均能在炉内停留足够时间而燃尽。在上述范围以外的粗粒子,只能在密相区翻腾,时间过长(10~30min),它会石墨化,反应活性下降而“失活”;而
d<0.09mm的细粒子大部分以飞灰形式一次经过分离器而离开锅炉,由于停留时间短,飞灰含碳量也会高。因此,必须根据该煤质的成灰特性,调整入炉煤的粒度级配,尽量减少粒径偏大或偏小的床料,其中,控制入炉煤中d<0.2mm粒子的份额对降低飞灰含碳量尤为重要。我公司加大对细碎机的设备管理,提高细碎机效率,增加煤粒取样化验次数,对煤的粒度提出了更高的要求:
l 入炉煤粒度为0-7mm;l 中位粒径d50=0.6mm(d50=0.6mm代表的意义是煤的粒度以0.6mm为分界各占50%);l 煤的粒度小于200μm的不大于25%。l 通过这些措施合理调整且优化了煤的粒度级配,减少煤粒中过大过小的成份,使煤在炉内的燃尽程度有了较大提高,有效降低了飞灰可燃物(见表5)和底渣含碳量,大大提高了循环流化床锅炉的燃烧经济性。3.3 经济指标分析3.3.1 降低风机电耗对于典型的循环流化床锅炉,为适应其燃烧方式的特殊性,在炉膛底部布置了高阻力的布风板,并辅有较厚的床料,这就需要风机有足够的压头将燃烧风送入炉膛内燃烧,一次风机电耗较高;另外,炉内循环物料量大、浓度高,旋风分离器的存在也增加了烟气的流动阻力,因而引风机的全压也较高,引风机的电耗也较高。因此,循环流化床锅炉的风机电耗相对较高,我公司在试运初的一段时间内风机电耗高达14.12kwh/t(以蒸发量为计算基数),为降低风机电耗我公司采取以下措施:
l 采用四项有效的循环流化床锅炉燃烧措施即:低床压、低氧量、高炉膛压力、优化煤粒粒径级配措施,提高锅炉燃烧效率的同时也降低了风机电耗。l 低负荷时采用单风机运行:因循环流化床机组的调峰能力强,经常在较低负荷下运行(50%),一、二次风机、引风机的风机容量裕度大,因此低负荷时积极探索单风机运行方式,合理分配风量,优化风机出力,也直接降低了风机电耗。在最低负荷时一次风机、二次风机、引风机均为单风机运行方式。l 设备改造:因循环流化床机组的调峰优势,负荷波动大,风机调整范围大,为此将引风机由挡板控制改为液粘控制,改造后引风机平均运行电流由改造前的113.8A下降到86.7A(2006年上半年数据),有效的降低了引风机电耗。l 排渣系统改造:将原风水联合冷渣器改为滚筒式冷渣器,三台冷渣器风机退出运行,风机电耗显著降低,同时还增加了排渣的可靠性。经采取以上措施,2006年上半年#3、4炉引风机电耗完成4.23kwh/t,同比降低0.69 kwh/t;一次风机电耗完成5.51kwh/t,同比降低0.46 kwh/t;二次风机电耗完成2.33kwh/t,同比降低0.01 kwh/t;冷渣器流化风机电耗完成0 kwh/t,同比降低0.89 kwh/t(见表4)。风机电耗的降低直接降低了锅炉的厂用电率。表4 锅炉主要经济指标对比表序号项目单位试运初期采取措施后1床压kPa8-116-72氧量%4-62-33炉膛压力Pa±50
+100~+2004引风机运行平均电流A113.886.75引风机电耗kWh/t4.924.236一次风机出口压力kPa15137一次风机电耗kWh/t5.975.518二次风机出口压力kPa1199二次风机电耗kWh/t2.342.3310冷渣器流化风机电耗kWh/t0.89
0(改滚筒式冷渣器)11锅炉燃烧效率%9093.212供电煤耗g/kWh38938113飞灰含碳量%有时达159
上一页 [1] [2] [3] [4] 下一页
本文关键字:流化床 电工文摘,电工技术 - 电工文摘