您当前的位置:五五电子网电子知识电工技术电工文摘750kV系统用无间隙金属氧化物避雷器的研究 正文
750kV系统用无间隙金属氧化物避雷器的研究

750kV系统用无间隙金属氧化物避雷器的研究

点击数:7812 次   录入时间:03-04 11:44:18   整理:http://www.55dianzi.com   电工文摘
何计谋,朱 斌,张宏涛,祝嘉喜,金 强,杜少斌
(西安电瓷研究所,陕西省 西安市 710077)  摘要: 介绍了750kV系统用无间隙金属氧化物避雷器的结构和主要性能指标。其中,对避雷器的电位分布采用有限元法进行了计算,对其加装并联电容前后的电位分布也进行了分析比较;对避雷器的抗震性能采用有限元法进行计算和分析;并按IEC 60099-4标准规定对避雷器的污秽性能进行了试验验证。分析计算和试验表明:该避雷器的最大电位分布不均匀系数为109,能满足长期运行的要求;可用于地震烈度为8度的地区和Ⅲ级污秽地区使用,还可适用于海拔2000m地区。 关键词: 电力系统;750kV;避雷器;电位分布;抗震性能;污秽性能     0 引言   

  750kV系统用无间隙金属氧化物避雷器是为配合750kV输变电示范工程建设,为系统提供过电压保护而进行研制开发的。该产品是使750kV交流系统中电气设备免受雷电及操作过电压损坏的重要保护电器
[1,2]。

  750kV系统用避雷器在我国为首次开发。通过对750kV系统用无间隙金属氧化物避雷器的保护特性、电位分布、机械性能及耐污性能等关键技术的研究,完成了避雷器的研制,并通过了型式试验,其性能达到了750kV工程技术规范的要求[3]。本文着重介绍了750kV避雷器的保护特性、电场分布和抗震性能的计算分析及避雷器的污秽性能试验。

1 避雷器结构及主要性能指标


  750kV避雷器由4个避雷器元件串联组成。在其高压端加装均压环。避雷器外形结构见图1。避雷器采用均压环和并联均匀电容来补偿由于避雷器高度、表面污秽引起的电位分布的不均匀性。避雷器外套采用大小伞防污结构,因而具有良好的防污性能。避雷器元件的上下两端都设计有压力释放装置,并装设有隔弧筒,以便有效地防止因电弧的热冲击而引起的瓷套爆炸事故。避雷器的主要技术性能指标见表1。

表1 避雷器的主要技术性能指标


项目名称
Y20W-600/1380GW

系统标称电压 (有效值)/kV
750

系统最高运行电压 (有效值)/kV
800

续表


项目名称
Y20W-600/1380GW

 避雷器额定电压 (有效值)/kV
600

 持续运行电压 (有效值)/kV
462

 标称放电电流/ kA
20

 直流1mA下参考电压(U1mA)/ kV
≥810

 
≥600

 陡波冲击电流20kA下的残压 (峰值)/kV
≤1518

 雷电冲击电流20kA下的残压( 峰值)/kV
≤1380

 操作冲击电流2kA下的残压( 峰值)/ kV
≤1142

 075 U1mA下泄漏电流/ μA
≤50

 4/10大电流冲击耐受电流(2次)/kA
100

 2ms方波耐受电流 (18次)/A
2500

 线路放电等级
5



图1 避雷器外形结构

2 750kV避雷器的关键技术   


21 保护特性

  避雷器的保护水平是电力系统过电压保护和绝缘配合中的一项基本参数。避雷器的保护水平是由其残压决定的。避雷器残压分为陡波冲击电流下的残压、雷电冲击电流下的残压和操作冲击电流下的残压3种。750kV与500kV避雷器保护特性和通流容量的比较列于表2。

表2 750kV与500kV避雷器保护特性和

通流容量的比较


项 目
750kV避雷器
500kV避雷器

陡波冲击保护水平/pu
228
260

雷电冲击保护水平/pu
211
233

操作冲击保护水平/pu
175
191

2ms方波冲击耐受电流/A
2500  
1800  



  从表2可以看出,750kV避雷器要求的残压比500kV避雷器的低,吸收能量大。根据750kV避雷器的性能要求,研制开发出了D13电阻片,其通流截面积比500kV避雷器用的电阻片增大了23%,20kA下雷电冲击压比(避雷器雷电冲击电流20kA下的残压与直流1mA下的参考电压之比U20kA/U1mA)下降了10%,通流容量提高了39%。D13电阻片的这些性能可满足750kV避雷器的要求,其主要技术参数列于表3。

表3 D13电阻片的主要技术参数   


项 目
技术参数

电阻片压比K(U20kA/U1mA)
<168

电阻片2ms方波通流能力/ A
2500

电阻片的荷电率/%
90

电阻片4/10大电流冲击耐受/ kA
100

电阻片电位梯度/kV·cm-1
21




22 电位分布

  由于避雷器受到对地杂散电容的影响,使得避雷器不同位置处的氧化锌电阻片的电压偏差不相等,这将导致避雷器部分电阻片的荷电率增加,从而影响避雷器的使用寿命。由于750kV避雷器外形较高(约8.5m),如不采取措施,其电位分布的不均匀性会比较严重。按IEC
60099-4的规定[4],在未采取有效措施改善电位分布的情况下,产品每增高1m,电位分布不均匀系数会增加15%。这就意味着如果避雷器不采取有效措施,最危险点的电位分布不均匀系数计算值达128%,局部电阻片的荷电率也将增加,从而使此处的电阻片会加速劣化,影响了整体避雷器的运行可靠性。 

     对避雷器的均压措施,一般采用加装均压环,以减小避雷器上部电阻片的电压偏差。但并非所有避雷器都可以通过加均压环的方式将氧化锌电阻片的电压偏差限制在规定的范围内,尤其是对于电压等级较高的避雷器更是如此。对电压等级较高的避雷器,还必须加装并联均压电容的方法来改善避雷器的电位分布,以使电阻片的电压偏差被限制在正常运行的许可范围内。

     应用有限元软件ANSYS对750kV避雷器的电场分布进行了分析、计算。避雷器电场计算结构显示,仅依靠调节避雷器均压环尺寸无法满足电阻片电位偏差在-10%~+10%之间的要求,电阻片承受电压非常不均匀。计算结果表明,在各单元间并联适当的电容,可达到控制电位分布的目的。因此通过在避雷器顶端装设均压环的同时并联上电容器,这样可以显著地改善电阻片的电压偏差。电阻片电压偏差计算结果见图2。




    



图2 电阻片电压偏差



  通过对避雷器电位分布计算及优化,确定了避雷器采用双层均压环及每个避雷器元件并联不同电容量相结合的均压结构,使得避雷器的电位分布不均匀最大系数达到9%。避雷器电位分布见图3,图中MN表示最小值(min),MX表示最大值(max)。



    

图3 避雷器的电位分布

23 抗震性能

   按技术规范的要求[3],避雷器还应能承受0.2g地震水平加速度的能力。由于避雷器较高,总质量大,重心较高,因此进行抗震强度分析是产品设计过程中的一个重要环节。采用动力设计法的振型分解反应谱法和时程动力分析法[5]对避雷器进行抗震计算分析。

  采用ANSYS软件,建立有限元模型,将材料特性、截面性质、边界条件等输入计算模型并进行模型的模态分析,得到结构的各阶自振频率和周期。对模型进行反应谱分析,得到动内力和动应力的最大值。对模型进行时间历程动力响应分析,得到动内力和动应力随地震波时间历程的响应特性。

  在时程分析中采用了3种加速度地震波形,同时施加水平和竖直2个方向的地震加速度波形,进行瞬态动力分析。3种地震波形为:①El_centro南北向波和竖向波(美国,1940年)。分别将2个方向的加速度峰值调整到0.2g和0.15g。②Kobe南北向波和竖向波(日本,1995年)。分别将2个方向的加速度峰值调整到0.2g和0.15g。③正弦共振5拍波。由5个调幅波串组成,时间间隔为2s,2个方向的加速度峰值分别为0.2g和0.13g。

  根据计算结果,在8度地震烈度设防时,地震力作用下的结构最大位移发生在避雷器顶部的水平方向,结构最大应力发生在避雷器底部的瓷套管根部。瓷套管根部处的最大拉应力及安全系数计算值见表4。时程分析的结果表明,5拍波结构的位移、内力、应力响应大于El_centro波和Kobe波。采用5拍波计算时,瓷套管根部的轴力、剪力、弯矩和顶部位移时程曲线如图4所示。  

表4 瓷套管根部处的最大拉应力及安全系数

    


分析方法
反应谱法
时程分析法

El_centro波
Kobe波
5拍波

最大拉应力/MPa
12260
8184
6864
29196

安全系数
457
684
816
192


    

图4 5拍波时瓷套根部的轴力、剪力、

  弯矩和顶部位移时程曲线计算结果表明:避雷器瓷套的安全系数大于1.67,所以750kV避雷器结构的抗震强度能满足要求。因此在8度地震设防条件下,避雷器结构是安全的。

24 耐污性能

     避雷器外绝缘的污秽特性应考虑下面3种可能的效应:①外部闪络的危险;②避雷器内部的局部放电,这是由于避雷器的外表面和内部电阻片之间产生的径向电场所致;③内部电阻片的温升,这是由于避雷器外表面上的污秽层引起的非线性的暂态电压分布所致。

     对重污秽地区使用的避雷器,在设计上主要考虑避雷器外部伞形的结构、内部芯体结构及避雷器外部污秽情况下避雷器的热稳定。试验室试验和运行经验表明:污秽条件下避雷器内部电阻片的发热与吸收电荷有关,因此避雷器吸收的电荷量对评价避雷器的污秽性能是一非常重要的参数。

     按照IEC 815的规定[6]确定了避雷器的外绝缘结构及伞形尺寸。避雷器的伞形参数列于表5。

表5 避雷器的伞形参数

    


项 目     
计算值
规定值

伞间距和伞伸出之比
113
≥08

爬电系数
32
<35

剖面形状系数
109
>07

大小伞伸出之差/mm
15
≥15

爬电距离/mm
22572
20000



  对于避雷器的污秽特性,按IEC规定的瓷外套多节元件金属氧化物避雷器热应力的人工污秽试验方法[4]进行了试验验证。将避雷器元件置于20℃±15℃的环境温度中,环境温度应保持在±3℃偏差内。使用光纤温度传感器来测量电阻片的温升,选择距顶部为避雷器长度1/2~1/3之间的一点作为测量点。通过施加大于参考电压的工频电压,使电阻片的温度在10min内上升到60℃,在加热时测量注入到避雷器的电荷量,并按式(1)计算避雷器的最大温升ΔTzmax[4]。




    




式中,,ΔTh为加热试验期间的温升,K;Qh为加热试验期间注入避雷器的总的电荷量,C
;qz为平均外部电荷,C/(h·m);Dm为避雷器的平均直径,m;τ为温度60℃到22+0.63Ta之间(Ta是摄氏环境温度)从避雷器冷却曲线中产生的时间,h;Ur为避雷器额定电压,kV;Urmin为避雷器元件中的最小额定电压,kV。

  避雷器污秽试验时注入的电荷Qh及时间常数τ列于表6。避雷器的最大温升ΔTzmax计算值列于表7。根据IEC标准的规定,如果最大温升ΔTzmax的计算结果低于40K,则不需要进行污秽试验,并且动作负荷试验起始温度是60℃。从表7的计算结果可以看出,ΔTzmax<40K,因此750kV避雷器可适合于Ⅲ级污秽地区使用。

    


表6 避雷器污秽试验时注入的电荷Qh及时间常数τ

    


加热时间

th/s
注入的电荷

Qh/C
β /(K·C-1)
τ /h
△Th/K

500
316119×10×10-3
134443
17862
425

表7 避雷器的最大温升ΔTzmax计算值

    


污秽地区
污秽事件的周期tz/h
△Tzmax/K


2

6
105

876



3 结论


     (1) 通过对电阻片的工艺研究,开发出高性能、大尺寸的电阻片,其雷电冲击20kA的压比小于1.69,能量吸收能力达到380J/cm3,可满足750kV用避雷器对电阻片的性能要求。

     (2) 对避雷器采用了均压环和并联均压电容的措施,并通过有限元法对避雷器的电场进行了优化设计,使得避雷器电位分布均匀,最大电位分布不均匀系数为1.09,可保证避雷器长期运行的稳定性。

     (3) 建立有限元模型,采用动力设计法对避雷器进行了分析计算,其地震荷载和其他荷载产生的总应力为σ<[σ]/167,因此避雷器可适用于地震烈度为8度的地区使用。

     (4) 避雷器按瓷外套多节元件金属氧化物避雷器热应力的人工污秽试验方法进行了试验,通过了Ⅲ级污秽等级的试验验证,避雷器可适合于Ⅲ级污秽地区使用。

     (5) 该避雷器具有优异的保护性能、良好的耐污性能、可靠的密封和压力释放性能和高强度的机械性能等特点,可适用于海拔高度2km的地区。

4 参考文献


[1] 张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展.高电压技术,2003(9):16~18.

[2] 陈梁金,施围.金属氧化物避雷器对750kV线路进线开关的保护效果研究.电瓷避雷器,2003(4):36~39.

[3] Q/GDW 109—2003《750kV系统用金属氧化物避雷器技术规范》.

[4] IEC 60099-4:2004 Metal-oxcide surge arrester without gap
for ac systems[S].

[5] GB 50260—1996《电力设施抗震技术规范》.

[6] IEC 815 Guide for the selection of insulators in respect
of polluted conditions[S]


本文关键字:氧化物  金属  避雷器  电工文摘电工技术 - 电工文摘

《750kV系统用无间隙金属氧化物避雷器的研究》相关文章>>>