您当前的位置:五五电子网电子知识电工技术电工文摘配电系统一次设备及其参数配合 正文
配电系统一次设备及其参数配合

配电系统一次设备及其参数配合

点击数:7865 次   录入时间:03-04 11:41:32   整理:http://www.55dianzi.com   电工文摘
摘要:介绍了城网配电网一次设备及负荷开关与熔断器的配合
 关键词:配电网 箱式变电站 断路器 自动分段器

 

Abstract:The paper presents primary equipment of distributing network of city network and load breaker switchgear coordination with fuses.

Key words:distribution network;box transformer substation;trausformer;fuse;circuit breaker;automatic sec-tionalizer;automatic reclosing device;current transformer

1  前言

  由发电厂发出的电能,最后降到6~35kV等级,经过配电网变为城乡居民、工业,农业,商业用电。因此,配电网的可靠性直接关系到人民生活、工农业生产安全,另外,完善的电力市场、电价也要求配电网提高经济性及可靠性。

  配电网的主要设备是负荷开关—熔断器组合电器、断路器、、自动重合器、自动分段器、环网开关柜和中压电流互感器等,二次设备是自动控制、数据采集、规划、故障定位、检测计量、通讯等。随着一、二次技术(特别是二次技术)的发展,使两者紧密结合,形成了自动化配电网。例如:自动配电开关设备相互配合的配电自动化系统(称为ASDAS);基于馈线终端设备(FTU)的配电自动化系统(称为FTDAS),它们自动对故障线路进行判断及实现故障隔离;故障排除后,重合器重合恢复供电;在调度中心对配电网负荷测定,进行管理及重组,因此,决定配电网综合自动化性能的因素有三个:一是一次设备的技术性能;二是二次设备的技术性能;三是配电网接线方式。

2 负荷开关—熔断器组合电器

  负荷开关是用来开、合负载电流的开关装置,它一般具有关合短路电流能力,但是它不能开断短路电流。负荷开关可以单独使用在远离电源中心、且容量较小的终端变电站,用于投切无功补偿回路、并联电抗器及电动机等。

  熔断器结构简单、价格便宜、维护方便,仍然具有发展前途。熔断体是熔断器的主要元件,当熔断体通过的电流超过一定值时,熔断体本身产生的焦耳热,使本身温度升高,在达到熔断体熔点时,熔断体自行熔断切断过载电流或短路电流。

 

图1限流熔断器切断短路电流时电流波形

1—切断前电流波形:2—切断过程中电流波形

ia1—截止电流;tb2—动作时间

  负荷开关—熔断器组合电器中使用限流型高压熔断器,这种熔断器是依靠填充在熔体周围的石英砂冷却电弧,达到有效熄灭电弧,用于在强力冷却熄弧过程中建立起高于工作电压的电弧电压,因而具有很强限流能力(图1)。由曲线可见到,短路开始后电流上升,熔体发热,温度上升,电流升到a点,熔体熔化,由于熔断器的限流作用,电流上升停止,开始沿ab线段下降,在b点电流下降到零,此时完成熄弧。这种熔断器的整个动作过程发生在密封的瓷管中,在熄灭电弧时,巨大气流不会冲出管外。

  熔断器的限流特性,它是指熔断器的开断电路时,最大截止电流和预期电流稳态方均根的关系,可以从限流特性的截止电流值可估算出被限流熔断器所保护的电器设备内发生短路故障时产生的机械和热效应。

  负荷开关与熔断器配合使用于箱变和环网柜,可替代断路器,作为变压器的保护开关设备。

2.1负荷开关—熔断器组合电器保护变压器的优点

  试验表明,当变压器内部发生故障,为使油箱不爆炸,故障切除时间必须限在20ms内。采用断路器保护的话,断路器最快全开断时间(继电保护动作时间+断路器固有动作时间+燃弧时间)一般需要2~3个周波(40mes~60ms)左右,而限流熔断器则可保证在10ms以内切除故障。

  由于同电压等级负荷开关的价格大约是断路器的价格的1/4~1/5,而负荷开关+熔断器的价格仅仅是断路器的价格的1/3,因此采用负荷开关+熔断器有较大经济性。

  由于断路器是用于开断短路故障电流、大负荷电流、容性电流等通用的开关设备,因此体积大、笨重,结构也复杂。相比之下负荷开关体积小,简单易开发。

2.2负荷开关与熔断器的配合概念

  组合电器将控制和保护功能分开,大量经常发生的切负荷工作由负荷开关来完成,而极少发生的短路开断则由熔断器来完成(图2)。由于熔断器是一次性开断元件,负荷开关可连续多次“合、分”,因此,一般原则是尽可能延伸负荷开关动作范围,使负荷开关多动作,而熔断器少动作。

 

图2负荷开关与熔断器的功能配合

  区域I:(I≤Ink)为工作电流范围,Ink为组合电器的额定电流,它小于熔断器的额定电流InHH,组合电器的额定电流开断由负荷开关单独完成。负荷开关三相开断,三相熄弧。

  区域Ⅱ:(Ink<I<3×InHH)时,在此范围内器承受超过其额定电流的过电流,从2×InHH起,熔体动作,但熔断器尚不能熄弧。熔断器撞击器触发,使负荷开关动作,三相开断并熄弧。

  区域Ⅲ:转移电流范围内(3×InHH<I<15×InHH),从3×InHH起,三相熔断器之一首先动作,同时撞击器触发负荷开关分闸。另外两相线路可能由负荷开关切断,也可能由熔断器开断,即熔断器与负荷开关配合共同完成开断任务。

  区域Ⅳ:限流范围。当故障电流更大时(大约从20倍熔断器额定电流起),熔断器在电流的第—个半波就已动作,并使故障电流的峰值限制到它的允许通流电流ID,熔断器在过半波后,已开断三相电路,三相短路电流全由熔断器开断,负荷开关是无电流开断。

  因此,转移电流是指熔断器与负荷开关转换开断职能时的三相对称电流值。大于该值时,三相电流仅由熔断器开断;小于该值时,首开相电流由熔断器开断,其它两相由负荷开关开断。

2.3熔断器、负荷开关与变压器参数适配

  如何合理选配熔断器、负荷开关与变压器参数,涉及到能否合理发挥熔断器和负荷开关作用,这里仅举例说明。

  例:现有11kV、400kVA变压器,高压侧最大故障短路电流16kA,短路阻抗5%,试决定“负荷开关—熔断器”组合电器参数。

  解:(1)变压器的满负荷电流为

(2)允许过载15%,-5%分接头处抽头,这时变压器短时过载电流IP为:

    IP=21×150%×1.05=33A

(3)变压器励磁电流为:Is=21×12=252A,其持续时间Is=0.1s。

(4)兹选用某公司熔断器12kV,额定电流IN=40A,额定开断电流≥16kA,最小开断电流为(2.5~3)Ie=(2.5~3)×40=100~120A。

  从该熔断器产品说明书查得(从熔断器40A的时间—电流特性曲线):满足在252A励磁电流、且持续0.1s的要求。

  熔断器最小开断电流(2.5~3)Ie=100~120A,在负荷开关额定开断电流范围内。

(5)变压器二次侧直流短路故障时,反映到变压器一次侧的最大短路电流Ik为:

 

  从40A熔断的时间—电流特性中查得熔断器的动作时间为0.04~0.06s。

(6)选择负荷开关VN=12kV;IN=400A,分闸时间0.05s(50ms),转移电流1000A。

  因负荷开关分闸时间T0=0.05s,所以Tm=0.9T0=0.045s,从时间—电流曲线上查得:所需组合电器转移电流为280A。这个值小于由负荷开关额定分断能力决定的组合电器的额定转移电流(1000A),也小于二次侧直接短路时一次侧的短路电流IK(420A),因此提高转移电流数值,可以减少限流熔断器的动作次数。

图3示出了“与11kV、400kVA的变压器保护相关的特性”。

(a)现选择负荷开关VN=12kV;IN=400A。

(b)转移电流1000A是满足要求的。

(c)目前变压器容量为315~630kVA,取变压器短路阻抗5%时,得到因变压器二端子短路引起短路电流约330~660A,而负荷开关转移电流要避开这一短路电流(一般转移电流控制在这一短路电流的70%,即230~460A),因此用于环网配电单元变压器的负荷开关的转移电流取1000A已有足够裕度。

(d)采用脱扣器操作的组合电器,则要求求取交接电流。(当故障电流小于交接电流时,由脱扣装置动作触发负荷开关,分断电流;当故障电流高于交接电流时,由熔断器动作分断电流,而负荷开关仅作无电流分闸)。由图4看出最大交接电流不得大于负荷开关额定电流最小交接电流,不得小于熔断器的最小熔化电流,由此可看出,适当提高交接电流数值,可以减少限流熔断器的动作次数(限流熔断器中电流要大于故障电流时才动作),从而可减少熔断管的更换,使用SF6真空负荷开关可以提高交接电流。

 

图3与11kV、400kVA变压器保护相关的特性

[1] [2] [3]  下一页


本文关键字:暂无联系方式电工文摘电工技术 - 电工文摘