您当前的位置:五五电子网电子知识电工技术电力配电知识储能技术在风力发电系统中的应用 正文
储能技术在风力发电系统中的应用

储能技术在风力发电系统中的应用

点击数:7730 次   录入时间:03-04 11:53:18   整理:http://www.55dianzi.com   电力配电知识

 引言

  根据新能源振兴规划,预计到2020年我国风力装机容量将达到1.5亿kW,将超过电力总装机容量的10%。

  从电网运行的现实及大规模开发风电的长远利益考虑,提高风电场输出功率的可控性,是目前风力发电技术的重要发展方向。把风力发电技术引入储能系统,能有效地抑制风电功率波动,平滑输出电压,提高电能质量,是保证风力发电并网运行、促进风能利用的关键技术和主流方式。

  随着电力电子学、材料学等学科的发展,高效率飞轮储能、新型电池储能、超导储能和超级电容器储能等中小规模储能技术取得了长足的进步,拓宽了储能技术的应用领域,特别是在风力发电中起到了重要作用。储能系统一般由两大部分组成:由储能元件(部件)组成的储能装置和由电力电子器件组成的功率转换系统(PCS)。储能装置主要实现能量的储存和释放;PCS主要实现充放电控制、功率调节和控制等功能。

  1储能技术的分类和特性

  储能技术有物理储能、电磁储能、电化学储能和相变储能等4类。物理储能主要有飞轮储能、抽水蓄能和压缩空气储能方式;电磁储能主要有超导储能方式;电化学储能主要有蓄电池储能、超级电容器储能和燃料电池储能;相变储能主要有冰蓄冷储能等[1],[2]。

  1.1飞轮储能系统

  飞轮储能(FESS)是一种机械储能方式,其基本原理是将电能转换成飞轮运动的动能,并长期蓄存起来,需要时再将飞轮运动的动能转换成电能,供电力用户使用。

  高强度碳素纤维和玻璃纤维材料、大功率电力电子变流技术、电磁和超导磁悬浮轴承技术促进了储能飞轮的发展。飞轮储能的功率密度大于5kW/kg,能量密度超过20kWh/kg,效率大于90%,循环使用寿命长达20a,工作温区为-40~50℃,无噪声,无污染,维护简单,可连续工作。若通过积木式组合后,飞轮储能可以达到MW级,输出持续时间为数分钟乃至数小时。飞轮储能主要用于不间断电源(UPS)/应急电源(EPS)、电网调峰和频率控制,国外不少科研机构已将储能飞轮引入风力发电系统[3]。

  文献[4]利用飞轮储能电池取代传统的柴油发电机和蓄电池来充当孤岛型风力发电系统中的电能调节器和储存器,建立了系统的电流前馈控制数学模型,实验结果表明,这一方法能有效地改善电能质量,解决风力发电机的输出功率与负载吸收的功率相匹配的问题。

  美国的Vista公司将飞轮引入到风力发电系统,实现全程调峰,飞轮机组的发电功率为300kW,大容量储能飞轮的储能为277kWh,风力发电系统的电能输出性能及经济性能良好。

  中国科学院电工研究所已经研制出飞轮储能用高速电机;华北电力大学研制出储能2MJ、最高发电功率10kW的准磁悬浮飞轮储能装置。

  飞轮储能技术正在向大型机发展,其难点主要集中在转子强度设计、低功耗磁轴承、安全防护等方面。

[1] [2] [3]  下一页


本文关键字:风力发电  电力配电知识电工技术 - 电力配电知识