您当前的位置:五五电子网电子知识单元电路稳压-电源电路基于FPGA的太阳能并网逆变器研究 正文
基于FPGA的太阳能并网逆变器研究

基于FPGA的太阳能并网逆变器研究

点击数:7485 次   录入时间:03-04 11:51:34   整理:http://www.55dianzi.com   稳压-电源电路

  本系统设计的光伏逆变系统,采用了FPGA作为主控芯片,控制BUCK做最大功率跟踪,以及采用一个桥式电路,通过变压器,将模拟的光伏电池板上的电能输出到电网上。系统框架图如下所示:  

2 电路与程序设计

  这里分模块对电路各结构进行介绍,介绍内容包括电路拓扑、控制算法以及测量回路。系统主要可以分为两部分,以拓扑来分,前端的BUCK主要实现最大功率跟踪(MPPT)功能,后级的全桥通过锁相、电流环反馈实现电能输出。

  2.1 MPPT设计

  光伏电池板的输出电压有着很宽的工作范围,而且可以根据需要进行光伏板的串并联,我们在模拟光伏电池板工作时选取了额定电压为60V、额定功率100W的光伏电池板。为了保证实验安全,输出电压控制在36V附近,然后通过变压器输送到电网去。出于以上 考虑,我们选择了Buck拓扑来做最大功率跟踪设计。

  基本的Buck拓扑中采用了二极管作为续流通路。我们的电路输出侧工作在低压大电流的条件下,如果采用基本的buck拓扑,在二极管上会有很大损耗,极大的影响了效率。为了提高效率,我们采用Mosfet代替续流二极管,使续流的MOSFET和主开关管工作在互补工作状态,替代了续流二极管的作用,极大地提高了效率。

  2.1.1工作原理

  电路的拓扑结构如下:

  电路工作主要波形如下:  

      假设条件: 电感电流连续; 输出滤波电容两端电压恒定。 工作过程: 开关管M1开通时,开关管M2关断:电流经由开关管M1、电感L向负载供电,同时向电容充电。电感L在正向电压作用下,电流线性上升。 开关管M1关断时,开关管M2导通:电感L电流连续,电感电流不能突变,电流经由开关管M2、电感L这个环路流通。电感L承受反压,电感电流线性减小。电容放电,向负载提供电流,保证负载电流稳定。

      2.1.2理论公式 由电感L上的伏秒平衡可推得电路的电压比M:  

2.1.3 电路主要器件参数计算

  Buck电路器件的核心是滤波电感的设计,我们关于电路器件的参数设计是围绕此展开的。

  滤波电感的工作参数:

  最大平均工作电流:2.77A

  由于通过电感的电流很大,电感很容易饱和。我们直接选取了实验室最大尺寸的磁芯EE40。由于绕制电感时,实验室最粗的线径为0.71mm,我们只有选择0.71mm。由于绕制电感时,并绕的股数不能过多。考虑到模型电路连续工作时间不会很长,我们选取了较大的漆包线电流密度经验值6~8A。我们选择5股并绕,由公式计算0.71*0.71*5*8A=20.164A。这个设计值勉强能满足设计要求。

  2.3.5 测量电路设计

  电流测量电路设计

  电流测量的可供选择方案很多,常用的是运用采样电阻测量电流和电流霍尔测量电流方案。

  系统的充电回路的过流量很大,采用电阻测量电流时,电阻发热会很大,有明显温升,采样电阻的阻值不稳定,测量值误差较大。由于控制回路对采样电流测量的要求较高,这种测量方案不适宜。

  我们选择了霍尔电流测量电流的方案,霍尔电流测量方案同时还可以实现可供选择的型号为TBC5LX、TBC10LX、TBC15LX等。其中TBC10LX的测量电流最大值为30A,恰好可以满足我们测量需求。

  霍尔电流传感器输入电流量,输出电压值。输出电压为4V/10A,考虑到AD采样输入电压范围,电流采样后级加入同相放大电路做信号调理,实现信号电压匹配。

  考虑到对控制器的AD采样端口的保护,在同相放大电路中选取了单5V供电的轨到轨运放,限制了输出电压,起到了控制器采样端口的保护作用。

  电流测量电路的电路图如下:

      电压测量电路设计 电压常用的测量方案是分压电阻测量方案和电压霍尔测量方案。 由分压电阻测量电压隔离需要使用线性光耦,测量电路会复杂些。使用霍尔测量电压更加简洁。我们选择了电压霍尔测量电路。 电压霍尔输出的是电流信号,可以直接通过接电阻转换成电压信号。这种方案很容易受到负载效应的影响,测量精度差。电压霍尔的输出信号可以通过I-V转换电路和反向电路转换成与AD采样端口电压匹配的信号。 由于设计的电压霍尔测量电路的信号中存在负压信号,需要双电源供电运放,而双电源供电的轨到轨运放不常见。为了保护控制器的AD采样端口,在电压霍尔测量电路的输出端加入了电压钳位电路,保护控制器的AD采样端口。 电压测量电路:  

  2.3.6 电路控制策略 充电控制主要实现MPPT跟踪和蓄电池充电保护两个功能,在允许范围内应保证可以从光伏电池侧获得最大功率。 MPPT控制策略采用改进的扰动观察法[5]进行最大功率点跟踪。BUCK输出电压与输入电压关系为

,通过调节BUCK电路的占空比可以调节输出电压,进而改变输出功率,光伏电池电特性见图2.3.6.1。    

  传统的扰动法很难实现步长的自设定,要使系统具备比较优越的性能,就要在非峰值点附近要增大调整步进,在非峰值点附近要减小步进。通过改变步进,然后测得输出功率变化量即可以知道步进变化对输出功率的影响。即输出电压与功率的斜率,峰值点处得斜率为零,大处,说明离峰值点较远,可以增大步进,同理小处离峰值点近,应减小步进,将步进整定为即可实现步进自整定,由于存在斜率正负的问题只需取。 为了优化控制系统,由于在电压很低处输出功率很小,可以适当增大步进,加速系统启动过程。在稳态时应给一个小扰动,使峰值发生变化时也能跟踪到新的峰值点。如果系统出现故障或者出现过压过流,则退出MPPT控制系统。控制流程见图2.3.6.1 。  

  上述改进型BUCK电路如果采用两个MOSFET驱动互补的方式,除了降低损耗外还可以达到一些比较好的结果,比如不用考虑电流续流问题,因为电流可以在电容上倒流。但反相电流增加了开关损耗和导通损耗,只要电流倒流产生的损耗比通过传统BUCK电路二极管管压损耗小,整个系统相对来说损耗是减小的。推导过程和传统算法一样[6],只是电感电流可为负。由于IR2111单路PWM波输入时,可以输出带死区上下管驱动信号,在控制策略上只需要控制单路PWM输出的占空比即可。 2. 2 逆变器设计 逆变器的拓扑如下图所示,通过控制通过电感上面的电流信号可以控制系统的输出功率、功率因素以及相应的谐波成分。目前简单的控制算法是电压外环加电流内环PI控制。复杂的有带FIR滤波的重复控制、矢量控制(三相)等等。本控制系统采用传统的电压电流环控制方法,通过锁相查表的方式获取波形数据,针对电网需求可以作一定量的无功补偿。  



www.55dianzi.com

  为了将SPWM波的谐波分量滤除,在逆变器的输出端加了LC滤波器,从而得到正弦交流信号,A、B两点的电压

[1] [2]  下一页


本文关键字:逆变器  太阳能  稳压-电源电路单元电路 - 稳压-电源电路