您当前的位置:五五电子网电子知识电源动力技术开关电源技术基于MC68HC9O8JK3芯片的高压开关电源设计 正文
基于MC68HC9O8JK3芯片的高压开关电源设计

基于MC68HC9O8JK3芯片的高压开关电源设计

点击数:7811 次   录入时间:03-04 12:04:03   整理:http://www.55dianzi.com   开关电源技术

  前 言

  压电陶瓷作为一种微位移器件,在精密工程应用领域里有着广泛的应用前景。压电陶瓷材料的工作特性很大程度上取决于驱动电源的性能,驱动电源必须输出稳定性好的高幅值电压,并具有较好的动态性能,可适应外界条件的突变。传统的高压驱动电源通常以模拟脉宽调制芯片为核心控制开关电路、整流电路等完成稳定电压输出。随着数字控制技术的发展,单片机、数字信号处理器等数字芯片也逐渐参与到开关电源的设计,带来了可编程性、高集成度、高扩展性等优点 。本文提出了一种基于MC68HC9O8JK3芯片的高压开关电源,在低压(9~18 V)输入下能输出高精度频率可调输出电压,可满足压电陶瓷驱动电源的应用需求。

  1 高压开关电源的设计

  高压电源输入9~18 V,输出150 V方波电压,频率可控。电路结构采用单片机控制开关电源的方式,原理框图如图1所示。主功率回路采用准谐振反激式开关电源拓扑结构,控制芯片为MC33O60,直流电压经H 桥逆变电路转换后得到150 V方波电压。负载电压和电流采样信号经A/D转换后,输入单片机(MCU)控制芯片MC68HC908JK3,单片机根据软件算法完成恒流或恒压控制,同时输出频率可调的驱动信号到H桥逆变电路,实现直流电压到方波信号的转换。电路以MCU 芯片为控制核心,不仅能完成高精度精确的受控电压和电流输出,还能实现过压保护、过流保护、上位机通讯等一些重要的辅助功能。

高压开关电源原理框图

图1 高压开关电源原理框图

  反激式开关变换电路如图2所示。MC33060是低功耗固定频率的脉宽调制(PWM)控制芯片,内部集成了振荡器、误差放大器、5 V 基准源等,主要用来实现单端电压模式控制。开关管Q1导通时,输入向变压器储能,次级整流管D1处于关断状态;Q1关断时,整流管D1导通,变压器储能输出到次级,为C4充电。振荡电阻R1、振荡电容C3与内部振荡器一起产生振荡三角波,振荡波形与引脚3接收的MCU电压基准信号比较,产生PWM 信号驱动功率开关管Q1。为了降低开关管和整流管的电压应力,输出采用了倍压整流电路结构,通过整流管D1、D2和电容C4、C5实现了二倍压整流。

反激式开关变换电路

图2 反激式开关变换电路

  尽管反激式主回路具有结构简单,成本低等优点,但在高压输出下,其电压尖峰高和纹波噪声大显得更突出。为了减少高压电源的输出纹波噪声,电路设计引入了准谐振技术,使反激变换器工作在软开关状态,从而降低电磁干扰噪声(EMI),提高电源转换效率。

  开关管的导通时间:

  式中:Lp为初级绕组电感量;Ip为初级峰值电流;Vin为输入电压。

  变压器复位时间:

  式中 VOR为次级到初级的折射电压。当次级绕组中的能量释放完毕后,VOR也将消失。Lp、开关管漏极电容Cp和绕组电阻Rp构成一个RLC谐振电路,因此折射电压随时间t的变化关系为:

11

  开关管的漏源电压为:

565

  由此可得到准谐振反激式变换器的一个完整工作周期:

  准谐振反激式变换器的工作频率为:

565

  MCU控制电路核心采用MC68HC908芯片,其内部总线速度8 M ,集成了12路8位模数转换器(ADc)、4 k Flash存储器、2通道16位定时器等模块,控制电路如图3所示。电压电流采样信号经信号调理电路处理后,输入到单片机的ADC端口引脚6和引脚8,得到采样信号的数字量值。内置的算法程序进行计算处理后,生成电压基准值,经D/A变换器处理由引脚l9输出电压基准信号给电源管理芯片MC33060。如果输入电压、负载环境发生变化,单片机根据采样信号的偏差计算,将实时改变电压基准值,从而调整PWM信号的频率和脉宽,稳定输出电压。单片机内部的定时器产生两路PWM 驱动信号DR1和DR2,由引脚9、10输出到H桥逆变电路驱动功率管。

MCU 控制电路

图3 MCU 控制电路

  H桥逆变电路如图4所示。DR1和DR2为2路反相驱动信号,由单片机的定时器模块输出。DR驱动功率管Q2、Q5导通时,DR2驱动功率管Q3、Q4关断,负载供电150 V;DR1驱动Q2、Q5关断时,DR2驱动Q3、Q4导通,负载供电-150 V。因此,输入直流电压经H 桥电路作用后,在负载两端形成方波交流波形,改变定时器程序设置的频率参数就可调节方波电压的工作频率。为了减少功率管关断瞬间产生的电压尖峰,4个开关管都并联了滤波电容。

  出于成本考虑,本文选择了分立器件的方案构建H桥变换器。从提高电路可靠性的角度出发,还能选用集成的全桥变换器芯片,如SLA2403等。

H 桥逆变电路

图4 H 桥逆变电路



www.55dianzi.com

  2 实验结果

  基于上述研究方案,本文实际设计了一台高压直流开关电源。为了检验其性能参数,针对不同工作条件下的波形曲线进行了测试。图5、6分别为在12 V输入下,功率MOS管漏级电压波形和输人滤波电容EMI电压波形,对准谐振控制回路引入前后的工作波形作了对比。

12 V输入下MOS管漏级电压波形

图5 12 V输入下MOS管漏级电压波形

 输入滤波电容EMI电压波形

 输入滤波电容EMI电压波形

图6 输入滤波电容EMI电压波形

  由图5、6可知,如果没有准谐振控制回路,功率开关管的漏级电压波形在关断后期将出现振荡(见图5(b))所示;随着输入电压的增大振荡现象会更严重,同时导致EMI干扰现象严重(见图6(b))。

  因此,准谐振工作状态的引入减少了开关损耗,降低了EMI干扰,提高了电路工作的效率和可靠性。

  图7为高压开关电源变压器次级输出电压波形。图8为电源稳态输出电压波形(150 V、400Hz)。由图7、8可知,所设计的高压直流开关电源工作波形稳定,电压纹波噪声小。图8的输出方波有一些电压尖峰,主要由H 桥功率开关管的高频导通关断而产生,通过尖峰吸收电路可较好地抑制。

[1] [2]  下一页


本文关键字:开关电源  开关电源技术电源动力技术 - 开关电源技术