您当前的位置:五五电子网电子知识通信技术综合通信技术基于光载Wi-Fi异构结构的传送层网络 正文
基于光载Wi-Fi异构结构的传送层网络

基于光载Wi-Fi异构结构的传送层网络

点击数:7197 次   录入时间:03-04 12:02:19   整理:http://www.55dianzi.com   综合通信技术

  3动态可重构智能光载无线系统

  最主要的功能是实现光纤与无线的相互融合,从而实现宽带、高速和无线化的信息传递。这就需要搭建高效经济的RoF系统将射频信号加载到光载波上,并经远距离传输,在基站通过宽带天线实现点对点多业务无线信号的传送。

  3.1认知、协同与低能耗的智能RoF系统

  系统与生俱来的中心处理机制,使多信道无线信号的联合处理以及分布式动态可重构光载无线接入成为可能。通过最大程度的利用有限的频谱资源、时隙资源以及功率资源,可实现灵活、高效、低耗能的无线通信接入。

  我们基于RoF系统的中心处理机制,提出并搭建了具有认知、协同及低能耗的分布式动态可重构光载无线接入系统。系统在中心站同时控制多小区、多信道的频谱与时隙资源,利用远端天线收集各个小区和信道的使用状况,将资源合理搭配,实现动态可重构属性,使资源得到最大程度的利用。



www.55dianzi.com

  所提分布式系统具有认知、协同与低能耗3个特点。其中认知指的是中心站通过远程天线单元了解天线所在小区的无线信道使用状况,并以此计算分配资源方案;协同则是指在计算出最优化资源分配方式后,中心处理器将调度命令发送至系统设备,通过对微波和光波资源的控制实现资源的调度和网络的动态可重构属性;低能耗则是指由于中心站的资源由多个小区共同分享,因而减小了每个小区的设施,同时可在整个系统业务需求小时,关闭部分冗余设备和资源的功能,以节约能源。

  3.2有线无线资源联合调度的智能RoF系统

  中有线无线资源的联合调度是指同时考虑有线网络和无线网络的资源调度,从而最大化RoF网络的资源利用率,主要内容包括两部分:算法部分和协议部分。

  算法部分主要针对智能RoF网络的路由算法进行资源调度。我们提出了联合路由算法来实现RoF网络中有线无线资源的联合调度,从而实现端到端的全局最优路径。联合路由算法的主要思想为:把光网络和无线网络分为两个域,在中心站(CO)中构建出3个路径计算单元(PCE),其中两个子PCE分别负责光网络域和无线网络域的算路,父PCE负责协调两个域的路径计算,当业务到来时,通过子PCE和父PCE之间的信息交互,可以实现分布式环境下RoF网络中的全局最优路径。

  协议部分主要针对智能RoF网络的MAC协议进行资源调度。当无线网络接入一个新的连接请求时,除了考虑无线侧的资源分配外,还需要考虑排队时间和注册时间的影响,从而实现为业务分配合适的光波资源,达到微波光波资源的联合调度。该方法仅仅从时延造成的影响方面研究了微波光波资源的联合调度,实际上,当多个用户竞争资源时,吞吐量和公平性问题也需要加以考虑以达到更高的网络资源利用率,从而实现微波光波资源的联合调度。

  4智能RoF关键单元器件技术

  在传统的无线通信系统中,大部分微波信号处理功能是在基站中通过电信号处理器来完成,从而受到诸多成本和带宽的限制。光载无线系统中功能集中化的配置和光电域的转换使得在中心局可以完成一些全光微波信号的处理功能。这就需要为RoF系统配备相应的组成器件,从而适应RoF系统信号处理频域提升和业务集中的特点。

  4.1光载宽带无线信号的频谱感知

  探测泛在环境下微波信号的载频大小,进行信息的获取、处理和分析,是实现宽带接入与泛在感知的关键。微波光子频谱分析与感知正是基于此发展起来的一项关键技术,它利用微波光子技术瞬时宽带处理能力强、质量轻、损耗小、抗电磁干扰能力强等一系列优点,实现了宽带微波的瞬时处理与测量,给微波信号的频谱分析与感知开辟了一条新的研究思路。通过基于相干信道化及基于光子压缩采样的瞬时频率测量,实现了多频点、宽带的频谱感知与分析。

  基于相干信道化瞬时多频点频谱分析与感知方法:我们提出了通过在光域实现一级滤波,在微波域实现二级滤波,最后通过数字信号处理的方式对大带宽、多频点和高精度的信号进行感知处理的技术。基于光子压缩采样的瞬时多频点频谱分析与感知方法:我们采用压缩采样理论这一新颖的信号处理手段,利用微波信号在频谱上高度稀疏的特性,通过低速ADC采样实现了对宽带微波信号频率测量。

  4.2全光模数转换器模数转换器(ADC)是一种将模拟信号转换为数字信号的重要器件,是实现信号在高速通信网路中传输,以及实现信号储存、处理的前端器件。

  如图7所示为应用ADC的数字系统。和传统的ROF系统相比,数字系统在CO不需要混频以及本振源,并且对光链路的线性度以及链路增益要求不高,从而可以利用现有光接入网来实现传递射频(RF)信号。

应用ADC的数字系统

  为了克服传统电域ADC的内在的局限性,Henry F.Taylor于1979年提出了全光模数转换器(AOADC)的概念。全光ADC,其抽样、量化和编码都在光域进行,近年来备受各国科学家的重视。目前全球相关研究大都基于光纤实现数模转换,然而为了获得更高分辨率的模数转换,要求光脉冲有很大的光功率,从而能耗较高,不符合光器件向“绿色节能”的方向发展;另一方面,由于是基于光纤的,以上的量化编码方案不利于集成,不符合光器件向集成化的方向发展。

  为了使全光量化编码器向低能耗、光子集成、高速率以及高分辨率的方向发展,我们提出了一种利用半导体光放大器(SOA)中的非线性偏振旋转(NPR)效应来实现全光ADC的方法[7],其原理结构如图8所示。模拟信号被抽样信号抽样之后变成抽样光脉冲,随后被分成N份,输入到由个基于NPR效应的量化编码单元组成的量化编码矩阵。每一个基于效应的量化编码单元由两个级联的偏振开关(PSW)组成,如图8(d)所示。其中PSW1实现预量化编码,由于随着抽样光脉冲强度的增强,PSW1的中更多载流子被消耗,因而造成其输出光功率下降,为了保持强度不同的抽样光脉冲在量化编码单元中所获得的增益一致,PSW1之后级联另外一个偏振开关PSW2,其作用是实现增益的动态补偿。图8(b)所示为量化编码单元的传输函数,图所示为相应的编码输出,预量化编码和增益动态补偿相结合的方式可以很好地实现量化编码。由于SOA的增益恢复时间在皮秒级别,因而基于NPR效应的全光,其转换速率可以达到几百Gs/s(Giga-Samples Per Second)。

原理结构

上一页  [1] [2] [3]  下一页


本文关键字:网络  综合通信技术通信技术 - 综合通信技术

《基于光载Wi-Fi异构结构的传送层网络》相关文章>>>