您当前的位置:五五电子网电子知识单片机-工控设备综合-其它基于有源RFID的极低功耗温湿度传感标签的设计 正文
基于有源RFID的极低功耗温湿度传感标签的设计

基于有源RFID的极低功耗温湿度传感标签的设计

点击数:7364 次   录入时间:03-04 11:43:36   整理:http://www.55dianzi.com   综合-其它

      射频识别技术RFID(Radio Frequency IdentifICation)是通过射频信号对某个目标的ID进行自动识别得到对象信息,并获取相关数据的技术。不同于传统的磁卡和IC卡,RFID技术解决了无源和免接触两大问题,同时它可实现运动目标和多目标识别,能够广泛应用于各类场合。其突出优点是环境适应性强、能够穿透非金属材质、数据存储量大、抗干扰能力强。根据供电方式的不同,可以将RFID分为两类:无源RFID和有源RFID。无源RFID工作时,标签通过读写器的电磁场获得能量,标签本身不需要电池。有源RFID则恰恰相反,需要提供全部器件工作所需的电源[1],电子标签需要自备电池。与无源标签相比,有源RFID温湿度标签有着对阅读器的发射功率要求低、有效阅读距离远的优点,因此在冷链物流、医疗系统、仓储物资管理、疫苗生产物流、卫生防疫系统、科研机构等方面有着十分广泛的应用。但有源RFID温湿度传感标签对使用寿命、可靠性、体积等方面有较高的要求。因此,设计一个寿命长、可靠性高、体积小的有源RFID温湿度传感标签在国民生活中有着十分重要的意义。本文主要解决了有源标签设计的低功耗问题。
 1 有源RFID系统组成及工作原理
 有源RFID系统由有源标签、阅读器和应用系统三部分组成,如图1所示。有源标签具有唯一的身份识别码(即ID),一些有源标签内部还集成了传感器,用于对特定物理量的测量。在阅读器的有效工作范围内,电子标签主动地将自己的ID和所测得的物理量以电磁波的形式发送给阅读器,阅读器将相关信息存储在自己的存储设备中,存储在阅读器中的数据可以通过以太网口、RS-232、USB等通信接口传送给应用系统,以便对数据进行进一步处理[2]。

 2 有源温湿度传感标签的结构
 2.1 结构

 本文所设计的有源温湿度传感标签的结构框图如图2所示。有源标签的核心是一个微控制器(MCU),射频模块通过天线进行射频信号的收/发;EEPROM存储标签的身份识别码以及物品的属性等信息;温度检测和湿度检测分别用来检测标签所处环境的温度和湿度,为简化设计,可以使用集温湿度检测于一体的芯片;电量检测模块通过检测电池的电压,并根据电池电量和电压的对照关系,间接地检测出电池的剩余电量;电池为各个模块的正常工作提供电源。


 2.2 总体电路
 2.2.1 主控模块

 主控模块采用MicroChip公司型号为PIC24F16KA102的16 bit超低功耗单片机。该系列的MCU采用nanoWatt XLP(eXtreme Low Power)极低功耗技术,其典型休眠电流可以低至20 nA,实时时钟电流低至490 nA,看门狗定时器电流低至370 nA[3]。MCU可连续运行20年以上而无需更换电池,成为业界8 bit和16 bit MCU中低功耗性能最突出的MCU。该单片机具有SPI、I2C、UART、9个模拟输入通道、3个16 bit定时器/计数器、3个外部中断[3],完全可以满足有源标签的需求。MCU与标签通过SPI接口进行串行通信,如图3所示。图3中的J1是PIC 24F16KA102单片机用于下载和调试程序所用的ICSP接口。


 2.2.2 射频收发模块
 nRF24L01是一款工作在2.4 GHz~2.5 GHz世界通用ISM 频段的单片无线收发器芯片。nRF24L01主要由调制/解调器、CRC编码/解码器、GFSK滤波器、中频带通滤波器、功率放大器、低噪声放大器(LNA)、先进先出缓冲器(FIFO)组成[4]。通过SPI接口与MCU进行通信,其电路图如图4所示。nRF24LOT射频收发芯片有以下优点:
 (1)具有125个可选工作频道,可用于跳频工作方式,能够有效地降低周围环境的干扰。
 (2)采用QFN20封装面积仅为4 mm×4 mm,占用较小的PCB面积。
 (3)低功耗。当工作在发射模式下发射功率为-6 dBm时,电流消耗为9.0 mA,接收模式时为12.3 mA,掉电模式和待机模式下电流消耗更低。
 (4)具有自动应答和自动重发功能。
   (5)较高的数据传输速率。处于ShockBurstTM模式时为1 Mb/s,处于增强型ShockBurstTM模式时为2 Mb/s。

 2.2.3 温湿度检测模块
 SHT21S[5]是瑞士Sensirion公司的温湿度传感器,体积小、功耗低、稳定性好。该温湿度传感器在25℃时的温度测量精度为±0.3℃,温度响应时间为5 s~30 s(τ63%);湿度测量精度为±2.0% RH,湿度响应时间为8 s(τ63%)。该芯片通过SDM接口与MCU进行通信。温湿度的测量通过SCL(3脚)来选择,当SCL输入高电平时进行湿度的测量;SCL为低电平时进行温度的测量。也可以在SDA引脚外接一个低通RC滤波器将SDM信号转换为模拟电压输出。温湿度检测模块如图5所示。

 2.2.4 EEPROM
 PIC24F16KA102单片机内部有512 B的EEPROM。因此本设计采用单片机内部的EEPROM,以避免外接EEPROM,降低外接EEPROM带来的功耗(一般在mA级),以及节省器件,减少电路板的面积,降低成本。



www.55dianzi.com
2.2.5 电量检测
 电量检测采用MCU内部的高低电压检测HLVD(High/Low-Voltage Detect)功能,通过编程可以设定产生该中断的电压值,这样既解决了使用A/D检测电压没有内部参考源的问题,又在一定程度上降低了功耗。
3 软件设计
3.1 发送数据包的格式

 发送数据包的格式如图6所示。前导码用来进行同步,仅在发送模式下使用;标志位用来进行包识别,9 bit中仅仅用到其中的2 bit,剩余的7 bit保留;数据是要传送/接收的1 B~32 B宽度的物品识别信息,对于本设计,指的是要检测的温湿度以及电池的剩余电量信息;CRC校验选择生成多项式为X16+X12+X5+X1的16 bit CRC校验。

3.2 标签工作流程
 为达到超低功耗的目的,标签有两种工作流程:(1)正常的工作流程,检测出所需的物理量并打包发送,时间间隔是10 s(在程序中可自行设定)一次,每发送完一次即进入深度睡眠模式,达到10 s后通过定时器唤醒,唤醒后程序从复位向量处重新执行;(2)进入深度休眠状态,通过外部中断0(即INT0,外接nRF24L01的中断请求IRQ)进行唤醒,唤醒后重新从复位向量处执行。标签主程序流程图如图7所示。

4 系统测试
4.1 功耗测试与估算

 首先要通过PIC单片机的集成开发环境MPLAB IDE V8.46的软件仿真器测定单片机在初始化、温湿度检测等工作过程分别所需要的时间;其次,用示波器测试nRF24L01在各个工作过程所持续的时间和所消耗的电流;然后将以上测定的数据,输入MicroChip公司的极低功耗电池寿命估算软件(Microchip XLP Battery Life Estimator)中,如图8所示。

    标签寿命的计算是基于平均电流的,即标签的理论寿命等于电池的容量(mAh)除以标签消耗的平均电流(mA)。平均电流的定义如下:

[1] [2]  下一页


本文关键字:标签  综合-其它单片机-工控设备 - 综合-其它