您当前的位置:五五电子网电子知识单片机-工控设备DSP/FPGA技术基于DSP的低频频率特性测试仪 正文
基于DSP的低频频率特性测试仪

基于DSP的低频频率特性测试仪

点击数:7449 次   录入时间:03-04 11:51:55   整理:http://www.55dianzi.com   DSP/FPGA技术

摘要:传统的频率特性测试仪不仅价格昂贵,且得不到相频特性,更不能保存频率特性图和打印频率特性图,也不能与计算机接口,给使用者带来了诸多不便。而本文采用DDS技术作为扫频信号源;同时采用了集成模拟芯片AD8302对幅度和相位进行检测,用DSP芯片TMS320VC5409和CPLD芯片EPM7128进行测量控制和数据处理,人杌接口部分是利用单片机AT89C51实现,并配有打印机接口和串行通信接口。系统基本达到了全数字化,这有利于缩小仪器的体积,减轻重量,降低成本,并能较好的显示幅频特性和相频特性曲线。
关键词:DDS;DSP;CPLD;频率特性

    在现代电子测量中扫频测量占有重要地位,频率特性测试仪运用扫频技术可以对被测网络进行快速的动态测量,得到被测网络传输特性的实时测量结果。以往的模拟扫频仪大多是用LC电路构成的扫频振荡器,其体积庞大,结构复杂,价格昂贵,而且只能显示幅频特性曲线,不能得到相频特性曲线,给使用者带来诸多不便。随着电子科技的飞速发展,数字化、网络化、信息化,传统的频率特性测试仪已经无法完全满足科研人员的需要。因此,对于数字化、智能化高性能频率特性测试仪的需求量日益增大。

1 系统总体方案设计
    频率特性测试系统一般包含测试信号源、被测网络、检波及显示3个部分。本系统根据所要完成的测试功能及技术指标,该系统应由扫频源、幅度相位测量电路、控制及运算部分、人机接口单元几部分组成。系统总体方框图如图1所示。

a.JPG


    信号源电路由信号发生电路和信号调理电路两部分组成。在本系统中信号发生电路采用DDS技术(即直接数字频率合成技术)实现,用于产生频率、持续时间等均可控的扫频信号,并能够满足一般用户对频率范围的要求;信号调理电路主要是对信号中的噪声进行抑制并对输出信号的功率起到控制作用。
    增益相位检测电路是为了检测被测网络两端的幅度差和相位差。先对被测网络两端的信号进行预处理后对其进行模拟鉴幅和鉴相,然后把幅度差和相位差的模拟量由ADC转化为数字量,送给控制及数据处理电路进行分析处理。
    控制及数据处理电路要完成逻辑控制、数据处理和与人机接口部分通信3个主要功能,由DSP和CPLD组成。主要用于控制整个系统的协调工作,并对测量及人机接口部分来的数据进行分析处理。
    图形显示及接口电路负责接收各种指令和显示测量结果,例如,测量时扫频信号所需要的起始频率、终止频率、频率问隔、单频点持续时间、信号功率等参数,以及测量完成后显示特性曲线时显示方式的设置,如:刻度大小选择、文字标注方式、坐标选择等。

2 系统硬件设计
    系统由扫频源、幅度相位测量电路、控制及运算部分、人机接口单元几部分组成。
2.1 扫频信号源设计
    直接选用DDS技术设计扫频信号源。从本设计要求低频和成本考虑,这里选择AD7008系列中20 MHz芯片。扫频信号源框图如图2所示。由于AD7008内部没有时钟发生电路,所以需要外部时钟源提供时钟信号,本系统采用NBC12439为AD7008提供时钟信号。

b.JPG


    由于AD7008输出信号的幅度不能达到系统所要求的-55~+18 dBm的范围,故需要对信号进行放大,放大电路的设计较为简单,为了便于对输出信号的功率控制使用了可控增益放大器,易于数字控制增益的大小;又因为输出信号的最大功率要达到+18 dBm且信号频率最高达5 MHz,普通的运放难以达到要求,故使用射频放大器来提升信号的输出功率。AD7008所产生的信号直接由器件内部的DAC输出,内部不含低通滤波器,故要对其输出信号进行滤波处理。
2.2 幅度相位检测电路的设计
    介绍用幅度相位检测芯片AD8302来检测被测网络的幅度和相位,及其信号调理电路,以及模拟/数字转换电路和相位的极性判断电路。由于增益相位检测器AD8302要求被检测的两路信号功率在-60~0dBm范围内,为防止损坏器件,需对两路信号进行功率调整,本系统使用了易于数字控制增益的可控增益放大器AD8369和对数放大器AD8307构成一个反馈系统进行自动调整。对数放大器AD8307可以对信号的幅度进行检测,通过被检测到的幅度范围,系统调整可控增益放大器AD8369的放大倍数,使增益相位检测器AD8302能够有效地对被测网络的增益和相位进行检测。将模拟增益和相位检测结果转化为数字量的方法是采用ADC,由于检测结果是个慢变信号,因此对ADC的速度要求较低,本系统中具有3路模拟量要转化为数字量,因此选用了多通道模数转换器件——ADS8364。幅度相位检测电路的硬件设计方案如图3所示。

c.JPG


    另外,由于AD8302检测的相位是0~180°之间,不能给出相位是超前还是滞后,所以需要相位极性判断电路对相位进行判断,其电路主要由分频器电路、施密特触发器、D触发器等组成。
2.3 数据处理及控制电路设计
    数据处理及控制单元主要完成通信、数据处理、功能控制等工作。主要由TMS320VC5409、晶体振荡器、电源控制、WATCHDOG和CPLD等器件组成。



www.55dianzi.com
2.3.1 电路设计
    这一部分电路是数字电路,所用器件均为数字器件,核心芯片是TI公司的数据处理芯片TMS320VC5409和ALTEM公司的CPLD芯片EPM7128。电路结构图如图4所示。

d.JPG


    因为系统是对电网络进行实时测量,在测量过程中要采集大量的数据,对这些数据还需要进行数字滤波等方法来提高准确度,所以系统必然需要大数据量的运算,而单片机的运算能力弱不能达到实时处理的要求,故采用DSP作为数据处理电路的核心,考虑到系统成本因素采用TI公司的54系列DSP。
    在选择可编程逻辑器件时,容量大小是需要考虑的最基本问题。故在器件选择前,先确定完成设计功能所需逻辑资源的多少,本系统对CPLD所要完成的功能经仿真、综合后,约需占用1 500门左右的逻辑资源。综合考虑之后选择了Altera公司Max7000系列的EPM7128。
    在图4中TMS320VC5409通过主机接口(HPI)接受单片机系统来的各种控制命令,并通过EPM7128STC控制扫频信号源中的时钟发生器NBCl24 39、DDS芯片AD7008和可控增益放大器AD8369产生信号功率可控的扫频信号;控制增益相位检测电路中的2个可控增益放大器AD8369和A/D转换器ADS8364进行信号检测;据输入信号频率对两个MC12080的分频比进行控制;选通D触发器读入相位极性。
2.3.2 看门狗电路设计
    由于本系统是一个独立的系统,且DSP系统的工作时钟频率较高,在运行时极有可能发生干扰和被干扰,严重时系统可能会出现死机现象,为了克服这个毛病,除了在软件上做一些保护措施外,在硬件上也必须做相应的处理。硬件上最有效的保护措施通常采用具有监视功能(WATCHDOG)的自动复位电路。
    其基本原理为:电路提供一个用于监视系统运行的信号,当系统运行正常时,应在规定的时间范围内给监视线一个高低电平发生变化的信号,如果在规定的时间内这个信号不发生变化,自动复位系统就认为系统运行不正常并重新对系统进行复位。本系统采用MAXIM公司的微处理监视电路MAX706-T实现对系统的监视,电路如图5所示。

e.JPG


2.4 单片机系统设计
    本系统主要功能是完成人机接口功能和通信功能,包括键盘、液晶显示器、标准串行接口、微型打印机接口和与DSP通信的HPI接口等。单片机系统总体框图如图6所示。

f.JPG


    单片机是用AT89C51,通过1片8255A来扩展其并口,8255A的C口用于键盘接口,A口接到打印机数据线,打印机的控制线接于单片机的P1口(占3位),8255A的B口对液晶显示器进行控制,液晶显示器的数据线通过缓冲器接于单片机的P0口。HPI接口完成与DSP的通信。

3 系统软件设计
    系统电路的软件设计包括DSP软件设计和CPLD的软件设计。
3.1 DSP软件设计
    DSP软件的设计使用了TI公司的CCS开发工具,通过DSP仿真器进行调试,使用C语言和汇编语言混合编程。

[1] [2]  下一页


本文关键字:测试仪  DSP/FPGA技术单片机-工控设备 - DSP/FPGA技术