您当前的位置:五五电子网电子知识单片机-工控设备DSP/FPGA技术基于FPGA的OFDM系统设计与实现 正文
基于FPGA的OFDM系统设计与实现

基于FPGA的OFDM系统设计与实现

点击数:7962 次   录入时间:03-04 11:52:37   整理:http://www.55dianzi.com   DSP/FPGA技术

  而将同样的随机数经过MATLAB变换,得到的时域幅度如图8(实部)、图9(虚部)所示。

将同样的随机数经过MATLAB变换

  实际测量与仿真计算的方差分析如图10(实部)、图11(虚部)所示。两者结果基本一致。

实际测量与仿真计算的方差分析实部

实际测量与仿真计算的方差分析虚部

  4.2 帧到达检测同步模块

  对于帧到达检测同步系统,要求尽可能在较短的时间内建立同步,并且在帧同步建立后应有较强的抗干扰能力。通常用漏同步概率P1、假同步概率P2和同步平均建立时间ts三个性能指标来表示同步性能的优劣。在本文的帧同步信号提取电路的建模与设计中,是以7位巴克码识别器作为帧同步码组的。在同步系统处于捕获阶段时,设置自动判决门限为7;在帧同步建立以后,则把判决门限降为6,这样做的目的一方面是减少假同步的概率,另一方面是为了减少漏同步的概率。

  漏同步概率P1:

  假设系统的误码率为P,7位码全部正确的概率是(1-P)7,因此判决门限电平为7时的漏同步概率为P1=1-(1-P)7。若将判决门限改为6,此时允许有一位错码,出现一位错码的概率为C71P1(1-P)6。漏同步概率为P1=1-[(1-P)7+C71P1(1-P)6]。一般地,设帧同步码组数目为n,判决器容帧同步码组中最大的错码数为m,则漏同步概率为:

公式

  从前面的帧同步系统的设计可以了解到,识别器只能被动地识别与帧同步码组相同的码组,如果在信息码组中也出现了与帧同步码组相同的码组,这时识别器会把它误认为帧同步码组而出现假同步。

公式

  比较式(1)和式(2)可以看出,当m增大时,P1减小,P2增大,两者是矛盾的,另外还可以看出,当n增大时,P1增大,而P2减小,两者也是矛盾的。因此m和n的选择要兼顾P1和P2的要求。

  平均同步建立时间ts:

  假设漏同步和假同步都不发生,即P1=0,P2=0。在最坏的情况下,实现帧同步最多需要一帧的时间。若一帧的码元为N,码元宽度为Tb,则最长的帧时间为NTb。如果同时出现漏同步和假同步,需要额外的同步建立时间,由此得到帧同步平均建立时间为:

ts=(1+P1+P2)×NTb

  4.3 数据传输速率评价

  经过实际测试,针对256点结合QPSK调制,每解调出一个符号平均所需要的指令周期为41 216个时钟周期,即512μs。对此实际调试情况,分析其实测参数数据如下:

  一个OFDM符号内包含的比特数为:1/2(卷积码)×2bit(QPSK)×120(用户子载波)+2bit(BPSK)×8(导频子载波数)=136bit,则除去导频开销,能够用于数据传输的空中数据率为公式

  由此可见,实际测试的数据传输速率达到本系统要求(150kbps),表明此OFDM基带处理系统的数据传输性能充分满足所制定的标准。

  本文建立的基于FPGA的可实现流水化运行的OFDM系统的硬件平台,经系统调试和性能评价,符合设计要求,该硬件平台的实现使得低成本高速OFDM调制设备的实现成为可能。

  参考文献

  [1] 黄志伟,王彦. FPGA系统设计与实现[M]. 北京:电子工业出版社,2005.1.

  [2] 蔡云岩,李思敏. OFDM调制算法与FPGA实现[J].桂林电子工业学院学报,2002,(6).

  [3] 潘松,黄继业. EDA技术与VHDL[M]. 北京:清华大学出版社,2005.7.



上一页  [1] [2] 


本文关键字:暂无联系方式DSP/FPGA技术单片机-工控设备 - DSP/FPGA技术