事实证明,基于这一原因,接收机输入容限测量极具挑战性。在正常情况下,串行设备中的接收机输入对查看信号来说是几乎没有任何意义的接入点,因为感兴趣的信号由设备内部的滤波器处理,以偏置通过电缆、PCB轨迹和连接器传送时发生的劣化。进入接收机有源部分的信号封装在设备内部,因此使用传统技术是不能获得这些信号的,但是,必须评估其眼图和其它特点。
解决方案是使用DSP滤波器,模拟接收机内部滤波器的效应。用户可以把在设计被测设备滤波器时使用的相同的系数加载到示波器中。在应用滤波后,示波器用户可以探测输入针脚,同时查看信号,就象在内部探测设备一样。这种“虚拟测试点”揭示了接收机滤波后的信号,即使物理测试点是设备封装上的一个针脚。这个过程称为“反嵌”。
可以使用基于DSP的滤波器,实现当前首选的信号滤波技术,包括判定反馈平衡(DFE)。专有的DFE滤波器是当前许多高级串行收发机中使用的技术。示波器内部的数字滤波器可以接受任意FIR滤波系数,可以把DFE系数快照加载到示波器中,对DFE信号进行后期处理。
还可以使用DSP滤波,使连接到被测设备的夹具和电缆的影响达到最小。通过检定或建模夹具,把信息转换成相应的滤波系数,示波器用户可以开发“调出”外部单元导致的相移和信号劣化的滤波器。
使用 DSP 增强采集性能
数字信号处理技术可以在整个示 波器采集系统中提供许多好处,包括增强频率和相位响应、通道匹配、探头系统性能、信噪比行为及其它关键特点。
可以使用基于DSP的通道性能增强功能,实现异常平坦的幅度响应和相位线性度。在理想情况下,示波器的幅度响应在其带宽覆盖的整个频率范围内会保持不变,没有峰值或暂降。在传统示波器采集系统中,这种理想状态是不能实现的,但通过使用DSP,可以使不规则状态平滑化,在整个带宽中平衡响应。这种方法的好处是可以直到指定带宽极限,实现杰出的测量精度。例如,在12 GHz 示波器中,可以捕获频率为10 GHz的信号,其精度基本上与100 MHz频率的信号相同。在整个范围内,信号保真度会保持一致。
DSP处理还有助于改善仪器的频率滚降特点。这里的目标是控制响应下降的速度,以在保存瞬态响应及降低带外噪声之间实现最佳平衡。滚降太缓会导致更多的高频噪声成分进入测量频段。滚降太急可能会使支持准确平滑瞬态响应所需的高频率发生衰减。DSP可以非常准确地控制滚降的跳变沿,在噪声抑制和瞬态响应之间实现最优平衡,实现非常高的信号保真度。
还可以使用DSP,提供非常准确的通道匹配,其中把每条通道校准到同样的理想响应特点。在多路串行技术上执行伪差分测量或通道到通道测量时,在多条通道中获得几乎完全相同的阶跃进响应具有极其重要的意义。也可以使用这些技术,保证多台仪器之间实现准确的通道匹配。
还可以在探测信号路径中使用DSP,令示波器考虑相应差分探头及其高带宽可拆卸尖端的特点。
这里,DSP段作为标称平衡滤波器使用,其专用于探头路径,与以前相比,更紧密地把探头有效集成到示波器系统中,保证探头和示波器相结合,实现最平坦的频率响应。
总结
随着每秒几千兆位的串行总线标准的出现, 信号完整性 在整体系统性能中的重要性正在不断提高。新一代高性能测试仪器提供了足够高的带宽和采样率,支持干净、准确地捕获高速串行波形特点和眼图,满足了串行总线开发人员的需求。由于超低内部抖动,这些工具可以在对测量影响最小的情况下,测量信号抖动。此外,由于新的内置滤波工具,示波器可以从结果中消除测量路径的影响,这正成为串行总线标准中更加常见的要求。这些DSP滤波器已经成为测量高速数字设备中不可缺少的设备,特别是测量当前计算平台和网络平台中使用的串行元件时。正如本文所阐述的那样,可以使用DSP工具,消除探头和夹具的影响,允许设计人员使用“虚拟测试点”,查看设计中不能接入的节点中出现的信号。
本文关键字:技术 DSP/FPGA技术,单片机-工控设备 - DSP/FPGA技术
上一篇:单芯片的一致多处理