摘 要: 为适应电力体制改革后竞争日趋激烈的电源市场要求,新一代基于重水慢化的压水堆设计< AN lang=EN-US>ACR(先进CANDU堆)将大幅度降低单位造价、显著缩短建造周期、进一步降低平均发电成本,同时提高固有安全和非能动安全可靠性,继续改善核机组的运行性能,并且为实际应用先进燃料循环创造更有利的条件。ACR采用了渐进革新式的发展策略,既保留CANDU重水堆的基本特点和相关的发展优势,又应用一些关键性的技术革新,包括使用稍加浓铀燃料和轻水冷却剂,从而为融合当代先进重水堆和先进轻水堆的优点创造条件。它有利于充分发挥本土现有核电技术产业在技术、人才、燃料资源和制造能力方面的优势,促进核电本土自主化能力和竞争力的发展;可以高效利用多种核燃料资源,包括压水堆乏燃料、快中子增殖堆或其它转换堆生产的易裂变核燃料以及钍铀混合燃料等,从而为核电大规模可持续发展奠定现实的基础。
关键词: 新一代反应堆 ACR 重水慢化 先进燃料循环 可持续发展
A tract: To meet the increasingly more competitive electric power markets after deregulation, ACR design-the Advanced CANDU Reactors with heavy water as moderator and light water as coolant, is targeted to significantly cut ecific capital cost, shorten co truction schedule, reduce average electricity production cost; in the same time, it provides enhanced inherent and pa ive safety features as well improved operational performance, and promotes practical implementation of advanced fuel cycles. Evolutionary i ovation a roach is adopted for the ACR design, it is soundly based on the proven CANDU e ential features and a ociated development flexibilities, while some enabling technologies and new design features are creatively incorporated, including a tight lattice core with the use of slightly enriched uranium fuel and light water coolant. This allows ACR to combine the best of advanced heavy water reactors and advanced light water reactors. It provides a cooperative platform to fully utilize the existing strengths of domestic nuclear power technological industry in technologies, human resources, fuel resources, and manufacturing capabilitie this will advance the self-reliance capability and competitivene of the domestic nuclear power sector; the ACR type reactors can also efficiently utilize various fuel resources, such as fi ile material remaining in ent PWR fuel, generated by fast neutron breeding or tra forming reactors as well as thorium-uranium mixed fuel, thus contributing to the long-term and large-scale sustainable development of nuclear power.
Key words: New Generation Reactor ACR Heavy Water Moderator Advanced Fuel Cycles Sustainability
半个世纪以来,核能发电已经成为多数发达国家和一些快速发展中国家为实现经济和社会可持续发展的一个主要电力生产方式,每年为全世界提供了近五分之一的电能。全世界累积超过一万个堆年的核电厂运行实践表明,三大主流商用堆型,即压水堆、沸水堆和重水堆,不仅安全可靠,有利于环保,而且在很多电力市场上核电的全寿期平均单位发电成本比火电更有竞争力。由于各国为实现环保目标而加大力度限制燃煤发电产生的废物排放,同时快速膨胀的燃气发电又可能面临未来燃料价格飙升的威胁,而大量早期建设的核电机组将逐步退役,因此,核电正在迎来一个新的发展机遇。但是,由于全球性电力市场体制改革浪潮的兴起,特别是随着竞价上网机制的引入和独立发电公司的崛起,电源市场的竞争将日趋激烈,核电的进一步发展面临新的挑战。为了保护投资和实现较快的投资回报,未来发电企业将对核电机组的经济竞争能力和安全可靠性等提出更高的要求;20世纪80、90年代推出的一些改进型设计大多已无法满足这种新要求,特别是在经济性指标方面。为适应电力市场体制的这种结构性变革,核电不仅要在长期稳定的平均发电成本方面比煤电和气电有更明显的优势,而且在单位造价和初始投资总量上也必须大幅度降低,建造周期要明显缩短;另一方面,核电厂的安全可靠性要进一步改善,易裂变核燃料的利用率和长期可持续供应能力要进一步提高,废料的处理和防核扩散问题也要逐步得到解决。
为迎接这种挑战和机遇,一些国家的核电设计公司,或单独或联合,正在掀起新一轮的技术开发热潮;为满足未来不同时期电源市场的需要,已经提出了各种各样的新一代核电产品设计或初步概念。这些设计按慢化剂性质可分成四大类:以重水、轻水或石墨为慢化剂的三大类热中子堆,加上不需要慢化剂的快中子增殖堆或其它类型的转换堆。本文主要介绍由加拿大原子能公司主导开发的新一代基于重水慢化轻水冷却的先进CANDU堆(Advanced CANDU Reactor,简称ACR)技术的发展特点。先以中国秦山三期即将建成投产的CANDU-6机组为例,介绍重水慢化加压水冷堆和普通压水堆型核电厂之间的主要相似性和差异性。新一代产品设计ACR除了保留久经验证的CANDU基本特点和发展优势之外,还采用了一些关键性的技术革新,包括基于稍加浓铀燃料和轻水冷却的密栅式堆芯设计,从而为融合当代先进重水堆和先进轻水堆的优点创造了有利条件。ACR的堆芯尺寸显著缩小,堆芯物理和安全特性得到显著改善,所需重水的量大幅度减少,相关系统得到极大简化,蒸汽参数提高带来热效率的显著提高。由于ACR的工程设计改进是成熟渐进的,是基于现有成熟商用核电机组技术和经验,所以很快就可以投放市场;而它在造价的突破,在安全性、可建造性和易运行性等方面的显著改进,则为电力企业提供了一个可以与煤电和气电相竞争并且符合环保发展大趋势的电源选择方案。另外,ACR的设计理念有助于发挥中国现有核电技术产业的优势,促进本土自主化能力的发展,带动相关产业的发展和升级,包括推动易裂变核燃料产业和核电业的长期可持续发展。
1 CANDU型反应堆的特点
由加拿大原创开发的CANDU型反应堆是目前世界上已经发展成功并且经济性和安全性较好的三大商用核电堆型之一。CANDU核电厂与普通的压水堆(PWR)核电厂之间有极大的相似性,据估计,CANDU与PWR电厂大约75%以上(按价格计算)的设备基本上是相同的。首先,它们的常规岛部分所采用的汽轮发电机等一系列设备和相关技术基础基本上是一样的;其次,它们的核蒸汽供应系统也是类似的。为了利用核裂变时释放在堆芯中的能量来发电,两者所采用的办法都是通过高压泵把冷却剂不断输送入堆芯,冷却剂在快速冲刷流过核燃料棒表面的同时不断地把热量带出,然后又在蒸汽发生器的U型管内把热量传递给管子外侧的水,而水沸腾所产生的高温高压蒸汽则被用来推动汽轮发电机组发电。除了反应堆本体之外,CANDU与PWR的核蒸汽供应系统所用到的一些主要设备,如蒸汽发生器、冷却剂循环泵等也都是类似的。所以,多年来在发展压水堆技术过程中所建立起来的技术产业基础和制造能力,除了省去庞大和技术较复杂的压力壳之外,大多可以用到CANDU型核电厂。对ACR而言,由于也采用了轻水冷却剂和加浓铀燃料,重水的用途将只限于慢化剂侧,与普通压水堆技术相同部分的比例会更高;原则上除了堆芯之外,很多部分甚至可以通过协调设计成一样。
1.1 CANDU堆芯的四个基本特点
PWR和CANDU这两种类型的核电厂之间的关键差异在于反应堆堆芯,两者在设计理念上的差异决定了很不相同的发展潜力和灵活性。归纳起来,CANDU堆芯有四个基本特点:1)单独分开的低温低压重水慢化剂,2)水平压力管栅式堆芯,3)简单短小的燃料棒束组件设计,4)带功率运行时不停堆换料。
PWR堆芯承压部分是一个庞大的高压容器,所有的燃料组件、控制棒组件、兼作慢化和冷却用的加压水,以及其它堆内构件全部包含在里面。而CANDU堆芯的承压边界是由几百个小直径的水平压力管组成,每根压力管内装有简单短小的燃料棒束,高压冷却剂从棒束中间的缝隙间冲刷流过,同时不断地把燃料元件中的热量带走。以每个压力管为中心而构成的这些燃料通道组件,从一个卧式圆筒形排管容器的两端面贯穿过,而通道与通道之间是相互独立并且每个燃料通道的外侧面与重水慢化剂相接触。排管容器尺寸虽然也较大,但它内部充满的是低温低压的重水慢化剂。
由于燃料棒束组件简单短小,又加上反应堆堆芯是水平管道式的,这为不停堆双向装卸燃料创造了有利条件。在换料的时候,两台换料机分别与一个通道的两端对接,一端将燃料棒束一个个推入燃料通道,顺着冷却剂流动的方向将其推入堆芯;另一端接收卸出的乏燃料棒束。换料可以在反应堆带功率运行时进行,整个操作过程从控制室通过计算机系统按预编程序遥控自动完成。对秦山三期的CANDU-6机组而言,有380燃料通道,共装有4560个燃料棒束,一般平均每天对两个通道进行换料,每次换掉一个通道12个燃料棒束中的8个。CANDU不停堆换料带来的好处是多方面的,它不仅避免了因换料而需要周期性的强制停堆,更重要的是它提供了一种强有力和灵活的核燃料管理手段,可以用来优化堆芯中子物理特性,包括使反应堆的后备反应性降低到最小,并优化中子通量和功率的平稳分布。
本文关键字:技术 电工文摘,电工技术 - 电工文摘
上一篇:不锈钢管在核电领域的应用