(2)TT系统在国外被广泛应用,在国内仅限于局部对接地要求高的电子设备场合,如果在负荷端和首端装设RCD而干线末端装有断零保护,则可适用于农村居住区、工业企业及分散的民用建筑等场所。
3.4 IT系统
电力系统的带电部分与大地间无直接连接(或经电阻接地),而受电设备的外露导电部分则通过保护线直接接地(如图7)。
图7(a)配电中性点与地绝缘;图7(b)配电中性点经电阻(阻抗)接地;图7(c)配电中性点经阻抗接地而设备外露导电部分接到电源的接地体上。
下面分析发生单相短路故障时的情况这里只论述图7(b)。在发生第一次接地故障时。
Id≤U/(Z+RA+RB+ZL+Zf)
式中:
Z——配电系统中性点的阻抗
RA——用电设备的接地电阻,一般RA≤4Ω
RB——配电设备中性点的接地电阻,一般RB≤4Ω
U——电源相电压,220V
ZL——相线电阻
Zf——相线与外壳之间接触电阻
ZL、Zf数值很小,略去不计。按IEC标准,Z的阻抗推荐5倍于相线电压数值,
Z=5×2201000Ω
Id≤220/(1000+4+4)=0.218(A)
设备外露部分的电压:Uf≤Id•RA=0.218×4=0.872V,这个电压不会造成触电伤害,因此第一次出现这种情况,不用切断电源,而是发一个声光告警。
在发生第二次接地故障时(图8),M1设备的L3相接地,M2设备的L2相接地时,必须满足RA•Ia≤50V及RC•IC≤50V,式中Ia、IC分别为M1,M2保护器的动作电流。
在一般情况下,RA=RC=4Ω,则Ia=Ic≈50V/4Ω=12.5A;如果采用熔断器或空气断路器作保护时,IT系统只能提供小容量负荷。如果采用RCD,则IT系统可以提供较大负荷量。
4 漏电保护器的配置
4.1 漏电保护器的配置技术
一般仅有一级保护,额定动作电流I△n≤Vr/Rs。式中:Vr——安全触电电压,特别潮湿场所为2.5V,潮湿场所取25V,而干燥场所取56V;Rs为设备外露导电部分接地电阻。
如果有二级保护,图9表示了两级保护的动作时间和动作电流的配合关系。其第一级的目的是为了防止人身间接接触触电,被保护电网面积大负载电流大,通常150kVA变压器总出线电流216A,动作电流取100~300mA,而动作时间为0.2s以上;其第二级的目的是防止直接接触触电事故,被保护电网覆盖小,动作电流选30mA,动作时间≥0.04s。
如果多级漏电保护时,多级漏电保护I△n1≥3I△n2 t1≥tfd,式中,I△n1是上一级,I△n2为下一级RCD额定动作电流,tfd为上一级RCD可返回的时间;tfd为下一级RCD分、合断时间。
如果要采取三级保护,则(1)末线路端用电设备I△n=30mAt≤0.1s;(2)分支路选择RCD,取I△n=100mA t≤0.3s;(3)干线选择I△n=300mA t≤1s。
4.2 安装漏电保护器的注意事项
(1)漏电保护器能否正常工作,它与接地方式及安装方式有很大关系。这里仅举一例说明I△n=100mAt≤1s。
由于两个漏电保护器出线后的线路混用(见图10),而造成两个漏电保护器不能同时供电。
图中,由于临时将照明灯泡跨接在两个漏电保护器出线后的相线与中性线之间,它是跨接在2LDB中的相线与的1LDB中性线之间,当灯泡亮后,其相线电流流经2LDB和1LDB回到中线,很明显2LDB使出现不平衡电流,1LDB中也出现差流,从而2LDB和1LDB一起动作,切断了电源,因此造成两个回路都无法正常工作。
(2)安装漏电保护器时,一定要注意线路中中性线的正确接法,即工作中性线一定要穿过漏电电流互感器,而保护中性线决不能穿过漏电电流互感器,如图4—(a)(即TN-S系统)。
5 结论
(1)不同的接地方式应选用不同的接地保护器。TT系统中,RCD是接地故障的适合保护器;而在TN-C系统,就不宜采用RCD;在TN-S,TN-C-S系统,均可采用RCD作保护器。
(2)为了达到保护人身安全,又不要扩大停电范围,要正确选择RCD的分级保护。
(3)安装RCD保护,要防止接地方式混乱,及接地、接零混用。还要正确使用,使用不当也会造成停电或事故。
参考文献
1 唐定.唐曾海..《建筑电器技术》机械工业出版社,1999
2 滕松林.杨校生.《触电漏电保护器及其应用》 机械工业出版社,1994
上一页 [1] [2]
本文关键字:技术 电工文摘,电工技术 - 电工文摘