您当前的位置:五五电子网电子知识电工技术电工文摘光开关技术综述 正文
光开关技术综述

光开关技术综述

点击数:7582 次   录入时间:03-04 11:51:34   整理:http://www.55dianzi.com   电工文摘
   目前,在光传送网中各种不同交换原理和实现技术的光开关被广泛地提出。不同原理和技术的光开关具有不同的特性,适用于不同的场合。依据不同的光开关原理,光开关可分为:机械光开关、热光开关、电光开关和声光开关。依据光开关的交换介质来分,光开关可分为:自由空间交换光开关和波导交换光开关。
      机械式光开关发展已比较成熟,可分为移动光纤、移动套管、移动准直器、移动反光镜、移动棱镜和移动耦合器。传统的机械式光开关介入损耗较低(≤2dB);隔离度高(>45dB);不受偏振和波长的影响。其缺陷在于开关时间较长,一般为毫秒量级,有时还存在回跳抖动和重复性较差的问题。另外其体积较大,不易做成大型的光开关矩阵。因此,传统的机械光开关难以适应高速、大容量光传送网发展的需求。而新型的以微机械工艺为基础的微机械光开关既具有传统机械光开关的介入损耗低、隔离度高等优点,同时具有体积小易于集成等优点,成为大容量交换光网络开关发展的主流方向。
      热光、电光、声光效应光开关通过改变交换介质的波导折射率,实现交换目的。目前,常用的光开关有以下几种:MEMS光开关、喷墨气泡光开关、热光效应光开关、液晶光开关、全息光开关、声光开关、液体光栅光开关、SOA光开关等。随着新技术的发展,将有更多类型的光开关出现。
      一、光开关的主要性能参数
      交换矩阵的大小:光开关交换矩阵的大小反映了光开关的交换能力。光开关处于网络不同位置,对其交换矩阵大小要求也不同。随着通信业务需求的急剧增长,光开关的交换能力也需要大大提高,如在骨干网上要有超过1000×1000的交换容量。对于大交换容量的光开关,可以通过较多的小光开关叠加而成。
      交换速度:交换速度是衡量光开关性能的重要指标。交换速度有两个重要的量级,当从一个端口到另一个端口的交换时间达到几个ms时,对因故障而重新选择路由的时间已经够了。如对SDH/SONET来说,因故障而重新选路时,50ms的交换时间几乎可以使上层感觉不到。当交换时间到达ns量级时,可以支持光互联网的分组交换。这对于实现光互联网是十分重要的。
      损耗:当光信号通过光开关时,将伴随着能量损耗。依据功率预算设计网络时,光开关及其级联对网络性能的影响很大。损耗和干扰将影响到功率预算。光开关损耗产生的原因主要有两个:光纤和光开关端口耦合时的损耗和光开关自身材料对光信号产生的损耗。一般来说,自由空间交换的光开关的损耗低于波导交换的光开关。如液晶光开关和MEMS光开关的损耗较低,大约1~2db。而铌酸锂和固体光开关的损耗较大,大约4db左右。损耗特性影响到了光开关的级联,限制了光开关的扩容能力。
      交换粒度:不同的光网络业务需求,对交换的需求和光域内使用的交换粒度也有所不同。交换粒度可分为三类:波长交换、波长组交换和光纤交换。交换粒度反映了光开关交换业务的灵活性。这对于考虑网络的各种业务需求、网络保护和恢复具有重要意义。
      无阻塞特性:无阻塞特性是指光开关的任一输入端能在任意时刻将光波输出到任意输出端的特性。大型或级联光开关的阻塞特性更为明显。光开关要求具有严格无阻塞特性。
      升级能力:基于不同原理和技术的光开关,其升级能力也不同。一些技术允许运营商根据需要随时增加光开关的容量。很多开关结构可容易地升级为8×8或32×32,但却不能升级到成百或上千的端口,因此只能用于构建OADM或城域网的OXC,而不适用于骨干网上。
      可靠性:光开关要求具有良好的稳定性和可靠性。在某些极端情况下,光开关可能需要完成几千几万次的频繁动作。有些情况(如保护倒换),光开关倒换的次数可能很少,此时,维持光开关的状态是更主要的因素。如喷墨气泡光开关,如何保持其气泡的状态是需要考虑的问题。
      很多因素会影响光开关的性能,如光开关之间的串扰、隔离度、消光比等都是影响网络性能的重要因素。当光开关进行级联时,这些参数将影响网络性能。光开关要求对速率和业务类型保持透明。
      二、MEMS光开关
      MEMS(micro-electro-mechanical-systems)是由半导体材料,如Si等,构成的微机械结构。它将电、机械和光集成为一块芯片,能透明地传送不同速率、不同协议的业务。MEMS已广泛应用在工业领域。MEMS器件的结构很像IC的结构,它的基本原理就是通过静电的作用使可以活动的微镜面发生转动。从而改变输入光的传播方向。MEMS既有机械光开关的低损耗、低串扰、低偏振敏感性和高消光比的优点,又有波导开关的高开关速度、小体积、易于大规模集成等优点。基于MEMS光开关交换技术的解决方案已广泛应用于骨干网或大型交换网。
      典型的MEMS光开关器件可分为二维和三维结构。
      基于镜面的MEMS二维器件由一种受静电控制的二维微小镜面阵列组成,并安装在机械底座上。典型的尺寸是10cm。准直光束和旋转微镜构成多端口光开关。而对于光网络业务的交换和恢复,基于旋转铰接微镜的光开关是一种最好的选择,因为对于这样的应用,光开关不需要经常变换(甚至一个微镜处于一个状态可能一年多也不会发生变化)。而且,亚毫秒的开关时间也能很好地适应于全光网的业务提供和恢复。二维MEMS的空间微调旋转镜通过表面微机械制造技术单片集成在硅基底上,准直光通过微镜的适当旋转被接到适当的输出端。微镜的结构和控制如下:微铰链把微镜铰接在硅基底上,微镜两边有两个推杆,推杆一端连接微镜铰接点,另一端连接平移盘铰接点。转换状态通过SDA调节器(Scratch Drive Actuator)调节平移盘使微镜发生转动,当微镜为水平时,可使光束通过该微镜,当微镜旋转到与硅基底垂直时,它将反射入射到它表面的光束,从而使该光束从该微镜对应的输出端口输出。二维MEMS需要N2个微镜来完成N2个自由空间的光交叉连接,其控制电路较简单,由TTL驱动器和电压变换器来提供微镜所需的电压。开关矩阵的规模可以扩展到上千个端口。
      三维MEMS的镜面能向任何方向偏转,这些阵列通常是成对出现,输入光线到达第一个阵列镜面上被反射到第二个阵列的镜面上,然后光线被反射到输出端口。镜面的位置要控制得非常精确,达到百万分之一度。三维MEMS阵列可能是大型交叉连接的正确选择,特别是当波长带同时从一根光纤交换到另一根光纤上。三维MEMS主要靠两个N微镜阵列完成两个光纤阵列的光波空间连接,每个微镜都有多个可能的位置。由于MEMS光开关是靠镜面转动来实现交换,所以任何机械摩擦、磨损或震动都可能损坏光开关。
      目前,朗讯公司已研制了1296×1296端口的MEMS。其单端口传送容量为1.6Tb/s(单纤复用40个信道,每路信道传送40Gb/s信号),总传送容量达到2.07Petabit/s。具有严格无阻塞特性,介入损耗为5.1db,串扰(最坏情况)为-38db。使光开关的交换总容量达到新的数量级。OMM公司提出的4×4和8×8光开关,其速率小于10ms。16×16端口的交换时间增加到20ms。其4×4光开关的损耗为3db,而16×16光开关的损耗为7db,16×16设备可重复性达到3dB,而更小的只有0.5db。目前,OMM正在积极开发三维光开关,实现更大的交叉连接。Iolon利用MEMS实现光开关的大量自动化生产。该结构开关时间小于5ms。Xeros基于MEMS微镜技术,设计了能升级到1152×1152的光交叉连接设备,对速率和协议透明,允许高带宽数据流透明交换,无需光电转换。交换时间小于50ms,其微镜的控制精度达到百万分之五度。使用三维两个面对面微镜阵列,功率消耗小于1千瓦。
      三、喷墨气泡光开关
      安捷伦公司采用他们的热喷墨打印和硅平面光波电路两种技术,开发出一种二维光交叉连接系统。安捷伦把这种技术称为“光子交换平台”。其光开关平台包括两部分:下半部是硅衬底的玻璃波导,上半部是硅片。上下之间抽真空密封,内充特定的折射率匹配液,每一个小沟道都对应一个微型电阻,通过电阻加热匹配液形成气泡,对通过的光产生全反射。电信号的加入在下半部引入。在芯片与光纤的耦合上采用带状光缆通过硅V型槽BUTT END接触解决。当有入射光照入并需要交换时,一个热敏硅片会在液体中产生一个小泡,小泡将光从入射波导中的光信号全反射至输出波导。HP的喷墨打印技术的引入主要反映在对气泡(微电阻)产生的精密控制上。喷墨打印要在指定的地方产生墨点,这里要在指定的地方产生气泡。但气泡光开关同喷墨技术又不相同,气泡也许要维持很长一段时间。安捷伦称气泡由封闭的系统控制,因此不会溢出,通过控制蒸气压,保持液、气体能共存的温度和压力。喷墨气泡光开关交换速度为10ms。由于没有可移动部分,可靠性较好。32×32子系统损耗为4.5db,由于使用已有的技术,故其成本不高。同时具有较好的扩展性。
      安捷伦喷墨气泡光开关具有毫秒的交换速度,具有偏振不敏感性,因此具有小的极化损耗,能对速率和业务协议透明。具有低损耗、低串扰和小于-50db的高消光比。
      喷墨气泡光开关有两个重要因素要考虑:(1)如何很好地控制光开关的状态,如光开关频繁动作或长期维持气泡状态。(2)喷墨气泡光开关封装后,其内部材料和液体的生存时间问题(如典型的20年)。

[1] [2] [3]  下一页


本文关键字:技术  开关  电工文摘电工技术 - 电工文摘

《光开关技术综述》相关文章>>>