您当前的位置:五五电子网电子知识电工技术电源电荷泵式电子镇流器基本电路的分析 正文
电荷泵式电子镇流器基本电路的分析

电荷泵式电子镇流器基本电路的分析

点击数:7544 次   录入时间:03-04 11:37:01   整理:http://www.55dianzi.com   电源

1  引言
    普通电子镇流器拓扑,由带无源LC滤波器的桥式整流电路和高频逆变器组成,它已不能满足电网的严格要求,如线路输入端的功率因数要高,电网电流的THD要低等。断续升压式PWM变换器及其拓扑,可采用简单的控制电路,达到较高的功率因数,不过,它需要附加一只笨重的升压电感器,此外,开关功率管上的电压/电流应力一般也比较大。综合考虑,该电子镇流器的性能/价格比就不会太高。近年来,采用充电电容和高频交流源来进行功率因数校正(PFC)的电子镇流器成为极具吸引力的电路拓扑。因为,充电电容器按类似“电荷泵”的方式来调整输入电流的波形,这类电路,也叫做“电荷泵”功率调节器。因为在电路中,取消了升压电感器,输入端的LC滤波器的体积就大大减小了,镇流器的成本还可能降低。但是,其输入电流的THD>15%,灯电流的CF>2.4。本文在对该“电荷泵”电路的工作原理和存在问题进行分析后,采用二极管箝位技术克服了这些存在的问题,使在开环控制下,就能得到良好的输入电流和灯电流波形。为了验证理论分析结论,还提供了实验结果。
2  工作原理和存在问题
    图1为典型的“电荷泵”式电子镇流器电路图,图中LrCr是谐振元件,Cb1是隔直电容。该电路和普通镇流器电路的区别是:普通镇流器是在整流桥后紧接高频逆变器,而本电路是增加了一只电容Cin和二极管Dc,这两个元件在调整输入电流波形方面起到了关键作用。图1电路可分为两部分:PFC及DC/AC逆变。图2为其PFC部分的等效电路和理想波形。为了简化分析,把Cr两端的电压看作独立的高频电压源(Ua)。通过设计,使直流母线电压Udc高于输入的电网电压Ug,二极管Dc不会导通。从而,输入电流就等于Cin的的正向充电电流,电流的方向如图2(a)所示。这是通过调节ugudc来实现的。如果Cin上电荷的变化〔它正比于Cin两端电压的变化,即ucmaxucmin。参看图2(b)〕紧跟着输入电压ug变化,则可使功率因数达到1。具体分析如下 :


2.1  PFC原理分析
    在一个开关周期内电荷泵电路的稳态工作,可分为四个拓扑阶段,如图3所示。理论波形如图4所示。
    1)阶段1[0~α]
    在这个阶段,因为节点B处的电压ub低于Udc,而高于ugug <ub<udc,则二极管Dc和整流桥DB均关断。所以,输入电容Cin中没有电流通过,Cin两端上的电压uc不变化。而ua继续下降,把ub也向下拉。当ω t=α时,ub变得等于ug,此阶段结束。



    2)阶段2[α~π]
    在ω t=α,DB开始导通,ub被箝位到ug,使ub为恒定值。当ua继续下降时,uc必然增加。这样Cin被整流的电网电流充电。在ω t=π时,ua降至uamin,而uc则达到其最大值。

 
    3)阶段3[π~(π+β)]
    在ω t=π之后,uauamin开始增加,ub变得大于ug,迫使DB关断,因为ub低于udc,二极管Dc仍被阻断。同阶段1类似,电容Cin中无电流通过,uc维持不变。ua继续增加,ub继续提升,在ω t=π+β时,此阶段结束。
    4)阶段4[(π+β)~2π]
    在ω t=π+β时,ub变得等于udc,二极管Dc开始导通,因为ub被箝位到udc,当ua继续增加时,uc必然下降。Cin的放电电流流入udc,在ω t=2π时,ua增加到uamax,而uc达到其最小值。
   
    在ω t=2π时,该电路工作又进入阶段1,重复下一个开关周期。
    从上面分析可以看出,在该电路中的输入电流是断续的,它只在阶段2内有电流流过。在此阶段内,Cin上的电荷变化是:

式中:2Up=uamaxuamin——ua的交流峰-峰值。
    因为,在整个开关周期内,整流二极管只在阶段2内导通,则一个周期内的平均输入电流就等于Cin的平均充电电流,即:

要使功率因数值大,就期望输入电流紧紧跟随输入电压,即:

    这就意味着,如果满足式(7),该电路就会有良好的功率因数。这里,假定ua是正弦波形。事实上,ua可能是幅值恒定的其它任何波形。ua的直流偏置,也不是决定输入电流波形的因素。只要ua的峰-峰值(2Up)等于udc,就能保证获得良好的功率因数。
    从式(5)还可看出,2Up不应小于udc,这可避免电网电压过零时,电网电流发生波形畸变。如果2Up<udc,则在ug≤|udc-2Up|时,电网电流会变成零。

2.2  输入电流波形和灯电流波形不好的原因
    在实际电路中,输入电流可能畸变。这是由于C

[1] [2] [3]  下一页


本文关键字:镇流器  电子  电源电工技术 - 电源

《电荷泵式电子镇流器基本电路的分析》相关文章>>>