因为分母中的电阻比总是接近1,不需要考虑仪表放大器的增益,我们可得到,二运放仪表放大器的CMRR随差模增益的增加而增加。
在上述电阻网络中,由于存在误差,实际电阻值不可能完全等于标称值,即存在失配,可以将R1R3的实际值比它与R2R4之差值的百分率定义为失配。式(4)可以改写为
式中Mismatch为失配率。
编程增益的四个电阻间的任何不匹配都会直接影响CMRR。在环境温度下,精密的电阻网络通过微调可以达到最大精确度。电阻的温度漂移造成的任何失配都会加剧CMRR的降低。
显而易见,高共模抑制的关键是电阻网络,因此电阻比和相对应的漂移两者都要很好的匹配,而电阻的绝对值和他们的绝对漂移却不重要,关键在于匹配。
集成仪表放大器特别适合于增益编程电阻的比值匹配和温度跟踪。制作在硅片上的薄膜电阻的最初容差达到± 20%,制作过程中的激光修整使电阻间的比例误差减小至0.01%。此外,各薄膜电阻值和温度系数之间的相关变化很小,通常小于3×10- 6/℃。
图4说明在环境温度下电阻失配的实践结果。图3中,电路CMRR的测量(增益为11)用到4个电阻,其失配约为0.1%(R1=9999.5Ω,R2=999.76Ω,R3=1000.2Ω,R4=9997.7Ω)。直流CMRR的值约为84dB(理论值为85dB),当频率增加时,CMRR迅速下降。图4同时给出了电网干扰的输出电压的示波器波形。180Hz时200mV(峰-峰)谐波引起的输出电压约为800m V。由上述设定,一个输入范围为0~2.5V的12位数据采集系统的1sb权重为610mV。
A1同相端的Vin- 信号经A1后产生的相移或延时将导致Vin- 和A1的输出信号间出现向量误差,引起整个频率范围内CMRR的降低。为保证一定的CMRR,Vin- 和A1输出端的共模信号应有相同的相位和幅度,这只有在A1没有延时时才可能做到。选择一个匹配的高速双运放可以扩展频率范围,从而使CMRR保持平坦,但另一方面,高速运放会检拾外部高频干扰。另一个解决方法是在A1的反相输入端和地端之间接一个微调电容,缺点是必须手动微调。
所以图4的CMRR(在频率范围内)受两个截然不同的参数的影响。在低频时,CMRR与编程增益电阻的失配直接关联,高频时,运放的差模闭环增益引起CMRR的降低。
3.1.2 二运放仪表放大器的共模范围
二运放仪表放大器的输入共模范围受编程增益的影响。图3中,A1工作在闭环增益为1.1时,输入端的任一共模电压都被放大(即输入共模电压经1.1倍放大后出现在A1的输出端)。
现在讨论仪表放大器可编程增益为1.1时的情况(R1=1kΩ,R2=10kΩ,R3=10kΩ,R4=1kΩ)。A1的闭环增益为11,因为共模电压会被放大,所以输入共模范围受A1输出摆动幅度的严格限制。在应用中,强制性使用低电压引起的问题特别严重,这种情况下,运用满幅度放大器会增加一些摆动范围以缓解这个问题。
图4 可编程增益的四个电阻间0.1%的失配决定二运放仪表放大器低频时的CMRR。两个运放间闭环增益的差异会导致整个频段CMRR的降低。在180Hz时,200mV的电网谐波会在运放输出端产生800μV的电压。
图5 三运放仪表放大器的结构,R1,R2,R3,R4之间0.1%的失配会导致最坏情况下CMRR为60dB(增益为1)。漂移失配使CMRR降低加剧。
3.2 三运放仪表放大器
图5是三运放仪表放大器的结构,是分离和集成仪表放大器最常选的结构。整个增益的传输函数很复杂,当R1=R2=R3=R4时,传输函数可以简化为
(6)
R5和R6设置为相同值(通常在10~50kΩ)。简单地调节RG的值,电路的整个增益可由单位值调至任意高的值。
3.2.1 三运放仪表放大器的共模增益
如所期望的,仪表放大器的共模增益的理论值为0。为计算共模增益,设定输入端只有一个Vcm共模电压(也即Vin+=Vin-=Vcm)。RG上没有电压降,A1,A2的输出电压也等于Vcm,设A1和A2理想匹配,因此第一个近似值即第一级共模增益等于单位值并独立于编程增益。
假定运放A3是理想的,第二级共模增益由式(7)得到
代入式(1),共模抑制比就变为式(8)
上一篇:模拟集成电路具有以下特性