您当前的位置:五五电子网电子知识电子学习基础知识通信技术频分复用(OFDM)系统的原理 正文
频分复用(OFDM)系统的原理

频分复用(OFDM)系统的原理

点击数:7878 次   录入时间:05-01 06:50:51   整理:http://www.55dianzi.com   通信技术
近年来,备受人们关注的一项宽带传输新技术是以正交频分复用(OFDM)为代表的多载波传输技术【2】。多载波传输技术【3】把数据流分解为多个独立的子比特流,这样每个子数据流将具有低得多的比特速率,用这样的的低比特率形成的低速率多状态符号再去调制相应的子载波,从而构成多个低速率符号并行发送的传输系统。正交频分复用(OFDM)是多载波传输方案【4】的实现方式之一,在非对称数字用户线(ADSL)中,正交频分复用(OFDM)也被称为离散多音(DMT)调制。正交频分复用(OFDM)利用逆快速傅利叶变换(IFFT)和快速傅利叶变换(FFT)来分别实现调制和解调,是实现复杂度最低,应用最广的一种多载波传输方案。除了正交频分复用(OFDM)方式之外,人们还提出了许多其它的实现多载波调制的方式,如矢量变换方式【5】,基于小波变换的DWMT方式【6】,采用滤波器组的滤波多音(FMT)调制方式【7】等,但这些方式与正交频分复用(OFDM)相比,实现复杂度相对较高,因而在实际系统中很少采用。因此,与传统的单载波系统和CDMA系统相比,正交频分复用(OFDM)系统的主要优势在于:
1) 可以有效地对抗多径传播所造成的符号间干扰,与其他实现方法相比,多载波系统实现复杂度较低;
2) 在变化相对较慢的信道上,多载波系统可以根据每个子载波的信噪比来优化分配每个子载波上传送的信息比特,从而大大提高系统传输信息的容量;
3) 多载波系统可以有效地对抗窄带干扰,因为这种干扰仅仅影响系统的一小部分子载波;
4) 在广播应用中,利用多载波系统可以实现非常具有吸引力的单频网络。
1.3.2 正交频分复用(OFDM)的不足之处
在与传统的单载波传输系统相比,正交频分复用(OFDM)系统的主要缺点在于:
1) 对于载波频率偏移和定时误差的敏感程度比单载波系统要高;
2) 多载波系统中的信号存在较高的峰值平均功率比(PAR)使得它对放大器的线性要求很高。
1.4 多载波技术的发展
多载波调制技术本质上是一种频分复用技术。频分复用技术早在19世纪以前就已经被提出,它把可用带宽分成若干相互间隔的子频带,同时分别传送一路低速信号(如电报),从而达到信号复用的目的。各子载波上的被调制数据可以来自同一信号源,也可以来自不同信号源。这种传统的多载波调制方式复杂性比较高,因为各子载波都需要自己的模拟前端,同时为了使得接收机可以区分各子频带,各子频带之间必须有足够的间隔,从而避免经过信道后发生频谱混叠,所以频谱效率通常很低。但是在这种并行传输机制下,因为各载波上的数据速率较低,相应的信号的码元符号周期较长,并远大于信道的最大时延扩展,从而可以有效地减少由于信道单位时延扩展引起的符号间干扰问题。
为了提高FDM技术的频谱利用率,G.A.Doelz等在20世纪50年代提出了Kineplex系统。该系统的设计目标是在严重多径衰落高频无线信道中实现数据传输。系统使用了20个子载波,使用差分QPSK调制,且实现方式几乎和现代的OFDM一样:相邻子载波间的间隔近似等于子载波的符号速率,从而保证各子载波的频谱相互重叠,但又是正交的,于是可以大大地提高频谱利用率,但系统仍采用了传统的多载波调制系统实现方式。随后的多载波系统也是利用类似的技术提高频谱利用率。
以上系统中的子载波频谱没有经过滤波,各子载波频谱形状均为sin(kf)/f函数形式。为了限制系统频谱,R.W.Chang等分析了多载波通信系统如何使经过滤波,带限的子载波保持正交。随后S.B.Weinstein和P.M.Ebert提出了使用离散傅利叶变换(DFT)实现多载波的基带调制和解调,这样便不再对每个子载波都使用模拟前端,从而大大地降低了多载波系统的复杂度,为正交频分复用(OFDM)的演进作出了巨大的贡献。另外,Weinstein等提出了通过插入一段空白区作为保护间隔来消除符号间干扰,但这种办法不能保证信号经过色散信道后仍然保持保持正交,为此,A.PeLED和A.Ruiz提出了采用循环前缀(CP)的方法保证信号经过色散信道后仍然保持各子载波间的正交性。至此,现代正交频分复用(OFDM)的概念便形成了。1985年,Cimini把正交频分复用(OFDM)的概念引入蜂窝移动通信系统,为无线正交频分复用(OFDM)系统的发展奠定了基础。
正交频分复用(OFDM)技术具有良好的抗多径能力,从而受到大量关注。目前正交频分复用(OFDM)作为核心技术已被多种有线和无线标准采纳:
1) ADSL,被广泛用于提高铜双铰电缆用户的接入能力;
2) 在无线局域网领域的IEEE802.11a,HIPERLAN-2;
3) 欧洲数字音频广播(DAB)和数字视频广播(DVB);
4) 无线城域网标准IEEE802.16a等等。
同时,正交频分复用(OFDM)除了作为一种传输技术,还具有支持多用户接入的功能。
正因为正交频分复用(OFDM)潜在的多径对抗能力,且可以灵活地和其它接入方式结合成衍生系统,所以正交频分复用(OFDM)已被列为4G无线通信系统的可能解决方案,而受到研究者的广泛关注。
第二章 频分复用(OFDM)系统的原理
2.1 多载波调制基础
任何实际的通信信道均存在各种干扰,这些干扰限制了系统的最大传输速率。在宽带无线数字通信系统中,影响信息高速传输的主要干扰是由信道的多径效应所引起的频率选择性衰落。频率选择性衰落表现为对信号的某些频率成分衰减严重,而对其它频率成分衰减较小,造成系统性能的下降。克服频率选择性衰落的传统方法是在接收端采用均衡器或者采用直接序列扩频加Rake接收的方法,这两种方法在2G和3G蜂窝系统中都发挥了重要作用。随着信息传输速率的进一步提高,以上方法在实现复杂度和性能方面都面临许多障碍。为了克服多径信道的频率选择性衰落,一个很自然的想法就是将信道在频域上划分成多个子信道,使每一个子信道的频谱特性都近似平坦,使用多个互相独立的子信道传输信号并在接收机中予以合并,以实现信号的频率分集,这就是多载波调制的基本思想。与常规的单载波调制不同,在多载波调制中,多数的信号处理是在频域内完成的,当子信道的数目很多时,每个子信道都可以看作是一个无ISI的子信道,发送端不需要采用复杂的信号处理技术即可实现各子信道的无ISI信息传输,而且还可以根据每个子信道的衰落况来动态调整每个子信道上所传送的信息比特数。实现多载波调制的方法有多种:矢量编码方式、小波变换方式、结构化信道信号方式(SCS)【8】、滤波多音方式、以及OFDM方式等。

2.2 频分复用(OFDM)系统的技术原理
无线传输信道的一个主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机的,这些信号的到达时间和相位都不相同。不同相位的多个信号在接收端叠加,同相叠加会使信号幅度增加,而反相叠加则会削弱信号的幅度。这样,接收信号的幅度将会发生急剧变化,从而产生衰落。同时由于多径传输,在发射端发射的一个脉冲信号,在接收端将收到多个脉冲信号,这就造成了信道的时间弥散性。这种时间弥散性会造成接收信号中的一个符号的波形会扩展到其他符号当中,造成符号间干扰【9】(ISI)。为了避免产生ISI,应该令符号宽度要远远大于无线信道的最大时延扩展。而增大符号宽度必然会使数据传输速率降低,这就给在无线信道中高速传输数据造成了困难OFDM就是为了解决在无线信道中高速传输数据而被提出的。它通过快速傅立叶反变换IFFT【10】将数据调制到多个正交子载波上,在保证总的传输速率很高的前提下,使每个子载波上数据以较低的速率传输,从而能克服ISI。
2.2.1 OFDM的基本原理
图 2.1 是OFDM系统的原理框图。编码和交织后的数据进行串/并转换为多路信号,每一路信号进行星座映射为复信号,再进行IFFT完成多载波基带调制,然后经过串/并转换后,插入保护间隔,接下来进行加窗处理及D/A转换,并进行上变频,将信号进行频带调制。在接收端信号经历了与此对反的解调过程。
图2.1 OFDM系统原理框图

2.2.2 信号映射(mapping)
这里信号映射【11】指的是一种数字调制方式,根据相应的调制编码表把每个比特组转换成一个复数。IEEE 802.11a中规定OFDM系统有四种调制方式,即BPSK,QAM,16-QAM和64-QAM。经过串/并转换的二进制数据,每一路按映射方式分为1. 2. 4或6比特一组,按BPSK,QAM,16-QAM和64-QAM的星座图映射成复数。映射是按格雷码星座图进行的,如图2.2所示。图中 表示最先输入的比特。输出值d可表示为:
(2.1)
其中, 是归一化因子,依调制方式不同而取不同的值,具体参照表2.1。乘归一化因子的目的是为了让不同映射达到相同的平均功率。例如,对于16-QAM,当输入序列为 =0010时,对照表2.1查出 ,对照表2.2查出I=-3,Q=3,由式(2.1)得到输出值d为:
(2.2)

图2.2 BPSK,QAM,16-QAM的星座图
图2.2 BPSK,QAM,16-QAM的星座图

依此类推,可以画出64-QAM的星座图(限于篇幅故不再列出)。
表2.1 不同调制方式下 的值

BPSK 1
QAM

16-QAM

64-QAM

表2.2 16-QAM映射表

输入比特( )

00 -3
01 -1
11 1
10 3
( )
输出

00 -3
01 -1
11 1
10 3

2.2.3 OFDM系统的数学模型

图2.3 OFDM系统的数学模型框图
一个OFDM符号是多个子载波的合成信号,用N表示子信道的个数,T表示OFDM
符号宽度, (i=0,1,2,…N-1)表示分配给第i个子信道的数据符号, 表示第i个子载波的载波频率,rect(t)=1, ;则从t= 开始的一个OFDM符号可以表示为:

而当t取其它值时,s(t)=0。 (2.3)
多数文献中,采用复等效基带信号【12】来描述OFDM的输出信号:
而当t取其它值时,s(t)=0。 (2.4)

上式中的实部和虚部分别对应于OFDM符号的同相分量和正交分量,在实际中可以分别与相应子载波的Cos分量和Sin分量相乘,构成最终的子信道信号和合成的OFDM符号。

上一页  [1] [2] [3] [4] [5] [6]  下一页


本文关键字:暂无联系方式通信技术电子学习 - 基础知识 - 通信技术

《频分复用(OFDM)系统的原理》相关文章>>>