采用数字处理技术设计而成功的100Hz扫描电视,消除了普通电视制式由于场频低带来的图像大面积闪烁,减轻了长时间收看给电视观众带来的眼睛疲劳;提高了图像的垂直清晰度,是普通模拟电视制式场频过低缺陷的极好弥补。
100Hz扫描电路主要由视频存储器、模数转换电路(ADC)、数模转换电路(DAC)、倍频转换电路及时钟控制电路等组成,如图1-13所示。在低场频制式电视中,主要是图像闪烁易使人们的视觉疲劳,因此,倍场频的关键技术是如何使图像中的亮度(Y)信号和色差(R-Y、B-Y)信号完成数字格式的场倍频转换。
从视频处理电路输出的亮度信号Y、色差信号(R-Y)和(B-Y),首先由7.0MHz和3.5MHz低通滤波器进行必要的滤波,然后分别送入三路模/数转换器,在由锁相环振荡器提供的14.3MHz采样脉冲作用下,转换成8bit数据流。
锁相环振荡所产生的频率为28.6MHz,在向二路模/数转换器提供采样脉冲前,通过1/2分频后得到14.3MHz频率脉冲。输出的亮度数据流直接送入亮度信号存储器,进行一场的信号存储。输出的两色差信号数据流以时分复用的方式输入到色差信号存储器,进行一场存储。28.6MHz锁相环振荡器经1/2分频后输出的14.3MHz时钟频率,除一方面提供给三路模/数转换器外,另一方面还同时送入亮度信号存储器和色差信号存储器。因此,这就决定了亮度信号存储器和色差信号存储器的写入存储器频率为14.3MHz,当亮度信号存储器和色差信号存储器在读出数据时,其时钟控制则由定时控制倍频转换器控制,此时的时钟频率为28.6Mhz。
由于存储器的写入时钟信号是14.3MHz,而读出的时钟信号是28.6MHz,因而亮度信号和两色信号在慢写快读的作用下就分别完成了数字格式的场倍频的转换。
由亮度信号存储器输出倍场亮度信号数据流再由三路数/模转换器转换成模拟的亮度信号,经14MHz低通滤波送到后级解码电路。由色差信号存储器输出的倍场色差信号数据流,在定时控制倍频转换系统的时分复用的解调作用下,将R-Y信号数据流和B-Y信号数据流送入三路数/模转换器,使其成为模拟的色差信号,再由7MHz低通滤波器滤波后,送到后级的信号处理电路。
定进控制倍频转换系统在28.6MHz时钟频率及原始行、场同步信号的控制下产生倍场后的场同步信号和行同步信号,以使倍场频后的电视机的行场扫描同步,图像画面稳定。
六、I2C总线的控制技术
I2C总线,是INTER-IC串行总线的缩写。INTER-IC原文大意是用于相互作用的集成电路,这种集成电路主要由双向串行时钟线SCL和双向串行数据线SDA两条线路组成,由荷兰菲利浦公司于80年代研制开发成功,并先后用于音频、视频集成电路及中央控制中心,使数字技术扩展了彩色电视机的遥控功能,为开发16:9高清晰度数字彩色电视机奠定了基础。
I2C总线在传送数据时其速率可达100kbps,最高速率时可达400kbps,总线上允许连接的设备数主要决定于总线上的电容量,一般设定为400pF以下。I2C总线主要在微处理器的控制之下,因此通常称微处理器是I2C总线的主机。在一台数字技术的设备及彩色电视机中,总有受控于微处理器的设备或各种功能电路,而这些受控电路也被设入I2C总线,因此习惯上总称受控设备及功能电路为I2C总线的从机。这种主机与从机之间的连接通常是在总线的输出端,而输出端的电路结构为I2C总线的从机。这种主机与从机之间的连接通常是在总线的输出端,而输出端的电路结构又总是开漏输出或集电极开路输出。
通常数据传送要由主机发出启动信号和时钟信号,向所控从机发出一个地址、一个读写位和一个应答位,其中地址位为7位数据,在实际控制中,一般一次只能传送一个8位数据,并以一个停止位结束。
在实际应用中,往往被传送的数据位数会超过8位,也就是说总会有多字节传送,这时必须在传送数据地址结束后再传送一个副地址。因此,被传送的字节没有限制,但每一个字节后面必须有一位应答位。应答位通常被设定在低电平,当应答位处于高电平时,指示被传送的数据已结束。
I2C总线在空闲状态时,也就是不在进行任何操作控制时,数据线SDA和时钟线SCL总是处于高电平输出状态。当操作控制系统时,I2C总线的主机将发出启动信号,使数据线SDA由高电平变为低电平,同时时钟线SCL也发出时钟信号。
I2C总线在传送数据时,总是将最高位数码放在前面作为其特有的传送顺序。在数据传送过程中,如果从机在完成某一操作之前不能接收下一个字节数据,即数据中断,这时时钟线SCL将被位至低电平,从而迫使发送器主机进入等待状态,当接收器从机准备好接收下一个字节时再释放时钟线SCL,继续传送数据。
在I2C总线的控制系统中,有时从机也可以是多台微处理器,在多台微机同时工作时,它们对总线的控制也由相似于时钟的同步方式进行仲裁,也就是说时钟的同步与仲裁过程是同时进行的,不存在因是主机而有优先权次序。不同速度的从机可以接在同一I2C总线上完成相互间数据的传送。高速方式芯片和普通芯片可以混合于同一I2C总线上。
近年来,由于I2C总线只有两根控制,并且具有很强的自动寻址、多微机时钟同步和仲裁等功能而受到各半导体集成电路厂商的普遍应用。如在众多彩色电视机由普遍采用的由I2C总线控制的超大规模集成电路CXP80420(中央处理器)、SAA5243、SA5445(图文数据广播处理器)、TA8783N、TA8880、TA8772(彩色多制式视频/色度/偏转信号处理器),以及UPD6254CX、PCF8582A(存储器),TA8739P、TA8859、TA8889(偏转处理器),TA8777N(AV开关)、TA8776N(声音处理)、TDA8415(立体声/双伴音处理器)等。
目前,国内外众多电视机生产厂普遍采用了具有I2C总线控制功能的集成电路,从而也就推出了具有I2C总线控制的彩色电视机。例如日本东芝公司生产的东芝2518型彩色电视机、东芝2918型彩色电视机,日本索尼公司生产的大屏幕彩色电视机,我国天津通信广播公司生产的北京8340,四川长虹电器股份有限公司生产的长虹C2919PV、长虹C2939KV彩色电视机等。
由于I2C总线在控制过程中,主要完成的是能够代表启动信号、地址、读/写位、应答位等的数据流的数据传送,因此,在商业竞争中,人们习惯于称呼由I2C总线控制的彩色电视机为“数码彩电”。
事实上I2C总线的控制方法,主要是I2C总线对专用芯片配以相应地址,使被控集成电路中都含有自己的随机存储器RAM,而每一个RAM都有自己的地址,也就是被控制器中的副地址,用以对指令进行写入和读出。在分配给专用芯片的地址中,主要包含固定地址和可编程地址,其数码位数为7位。可编程地址的位数在很大程度上决定了连接到I2C总线上的同一型号芯片的最大数目。
因此,I2C总线的建立,为产品的升级提供了可能,但它不就此改变了模拟电视的转输模式,也不就此改变了彩色电视机接收模拟信号的性质。当然I2C总线控制的最新器件可以改变传统的彩色电视机的接收、处理等模式,但它需要电视、数字电路于一身的功能结构,及多项高新技术于一体的设备。
1.I2C总线的特点与特性
I2C总线与传统的PWM调宽脉冲相比较,其最大的特点是串行数据线和时钟线都是双向传输线。I2C总线在实际电路的应用中,两个线各自通过一个上拉电阻连接到电源电压的正极端,当总线空闲时,数据线SDA和时钟线SCL必须保持高电平,同时各接口电路的输出又必须是开路漏极或开路集电极,因此I2C总线的最大特性是在地址信息传输过程中,即可以是主控器也可以是被控器,或既可以是发射器又可以是接收器,从而为挂在总线上的各集成电路或功能模块完成各自的功能提供了极大方便。
如果I2C总线用作主控器电路即微处理电路,则在总线上将提供时钟传送及初始化的数据传输,而控制数据信息传送的对象、方向及传送的终止也由主控器来决定。在I2C总线上被主控器所寻址的集成电路或功能模块,称之为被控器。在I2C总线上,被控器每接收一个“数码”后都要在数据线上给主控器发送一个识别应答信号,以示完成一个控制功能。因此,I2C总线具有十分灵活的运用性。并且还具有多重主控的能力,如多个作为主控器去控制占用总线的电路,都可以根据在I2C总线上进行数据传送的工作状态,被分为主控发送器、主控接收器、被控发射器、被控接收器。在多重主控能力中,由于总线的仲裁过程,I2C总线的时钟信号将是各试力占用总线的各主控器的时钟信号的同步组合。所谓仲裁是在多个主控器试图同时控制总线时一个裁决过程,它只允许其中的一个主控器继续占用总线,并保证在整个过程中总线上的数据不会被丢失或出错误;所谓同步是将两个或多个器件的时钟信号进行处理。
I2C总线上的时钟信号是由主控器产生,每个主控器在占用总线传送数据期间都有自已的时钟,因此,在应用中,由一个主控器产生的I
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] 下一页
本文关键字:数字电视 无线电-电子技术知识,电子学习 - 基础知识 - 无线电-电子技术知识
上一篇:学习电子技术的一些方法