您当前的位置:五五电子网电子知识电子知识资料机器人-智能车矿井下移动探测机器人平台研究 正文
矿井下移动探测机器人平台研究

矿井下移动探测机器人平台研究

点击数:7560 次   录入时间:03-04 12:01:37   整理:http://www.55dianzi.com   机器人-智能车
    1 研究背景

  灾难应急搜索和救援机器人(Search And Rescue Robot)是自然灾害、事故等突发事件发生时,代替搜救人员进入现场执行搜救探测任务的移动机器人。该类机器人可以远程操控或采用自主的方式深入到复杂、危险、不确定的灾害现场,探测未知环境信息,搜索和营救被困者。搜救机器人是机器人技术朝实用化发展的一个重要分支和新的研究领域,具有重要的社会价值。

  搜救机器人可以应用于许多救援场合,比如地震、泥石流、台风、洪水、矿难、消防、危险物排除、野外勘察等。当灾难或事故发生后,现场环境复杂恶劣,充满未知和不确定性的因素,严重威胁搜救人员的生命安全,给搜救工作的部署和实施带来严峻考验。而灾难发生后的48小时是实施营救的关键时间,否则超过48小时被困者生还的可能性就变得很小。因此搜救机器人的研究具有重要的实用价值和社会意义,近年来受到了美国、日本、澳大利亚、中国等国家的高度重视。

  本课题的研究目标,是研发一种以主从式遥操作为主并具备一定自主能力的稳定、可靠的煤矿井下移动探测机器人平台,该平台的主要任务定位为煤矿井下危险区域的环境探测,包括环境温度、气体组成与含量(CO,CH4,O2,H2S等)探测,以及现场视频及音频的采集与实时上传;对于这些危险区域我们定位于有限目标环境的有限参数探测,因为煤矿事故种类繁多,情况复杂,我们不可能指望通过一两种复杂的机构适应所有的井下环境,特别是对于像冒顶、塌方等极度复杂的环境或者透水等特殊环境的探测,必须采用专用的机构与技术来解决;因此,本平台主要针对如瓦斯突出、局部火灾、爆炸或坍塌,而具有可进入条件的灾害环境进行探测。另外,作为一款搜救机器人平台本系统预留了可以加载如机械臂等末端执行机构的接口,从而为完成更加复杂和更有效的救援工作提供必要的技术支撑,也可以为该平台在其他搜索与救援领域(如地震、泥石流、火灾等其他灾难现场)的应用提供重要的技术储备。

  2 搜救机器人研究进展

  应急灾难搜索和救援机器人的研究起步于20世纪80年代,经过1995年的美国俄克拉荷马州爆炸案以及日本神户大地震,搜救机器人才逐渐被作为机器人学的人道主义应用研究被重视起来。

  随后的十几年时间里搜救机器人的技术不断发展,但仍多数停留在实验室阶段,参加实际救援行动并发挥重要作用的实例很少。搜救机器人第一次大规模参与到现场救援的应用案例发生在美国911事件后,当时有Talon、Solem、PACKBOT、VGTV、MICroTracs、SPAWARUrbot等六种军方和研究所的机器人参与了救援工作,如图1所示。在这次救援任务中,机器人系统的主要任务包括:在废墟中搜索可能有幸存者的空间,并监控现场的结构变化,防止发生倒塌危及现场救援人员。搜救工作主要分为两个阶段,在第一阶段的的工作中,机器人并不是过度深入废墟现场,而是在人不便于接近的地方起到辅助作用。第二阶段的工作重点是清理现场建筑残骸,并为分析世贸中心塔楼倒塌的原因提供依据。在这一阶段中,随着操作人员熟练程度的增加以及现场积累的经验,机器人系统的优越性逐渐表现出来。机器人通过深入现场近距离侦察、摄像,从而确定残存墙体的稳定性和发生倒塌的可能性;同时,机器人通过自身携带的不同类型探测器,测量一氧化碳、硫化氢、挥发性有机物的浓度和现场温度,形成现场环境危险情况的基础数据。通过十几名不同专业、不同领域的专家进行现场分析,并研究、指导现场的救援工作,大大加快了工作进度,并保证了人员的安全,体现了明显的优势。同时,在此次救援过程中也发现了机器人系统的一些问题,如防水能力、耐热能力、防震及其他抗恶劣环境能力的不足,以及机器人自身状态感知及环境描述方法的不足。总之,这次救援任务是人类历史上由救援机器人参与的规模最大、也是较为成功的一次救援,在这次救援过程中,工程技术人员和现场专家积累了大量的机器人系统进行灾难救援工作的宝贵经验,对今后搜救机器人的研究来说是一笔巨大的财富。

参与911救援的几种搜救机器人

  此后美国、日本、澳大利亚等国的搜救机器人开始逐渐参与实际灾害救援行动,通过与灾害应急部门的紧密合作,不断积累实际救灾经验,改进搜救机器人的性能,以提高机器人对搜救环境的适应能力。

www.55dianzi.com  经过几年的研究和改进,搜救机器人再次用于美国加州小镇拉•肯奇塔泥石流和“卡特里娜”飓风灾害的搜救过程。拉•肯奇塔泥石流灾害造成大量的房屋坍塌和煤气泄漏,Inuktun公司专门为救灾应用设计改进的机器人VGTV-Xtreme被派往现场,但由于履带脱落使搜救机器人无法继续执行任务。同年在美国历史上最严重的自然灾害“卡特里娜”飓风袭击后的救援中,VGTV-Xtreme发挥了重大作用。另外国际上为促进搜救机器人研究的进展,也设有专门的搜救机器人大赛RoboCup Rescue。

  我国的搜救机器人研究起步较晚,但最近几年发展较快,引起越来越多研究机构的关注。例如哈尔滨工业大学、上海交通大学、沈阳自动化研究所、广东卫富公司等都研制了各自的搜救机器人系统,中国矿业大学与清华大学等几家机构也研制了用于煤矿井下救援的移动机器人平台。但目前国内的搜救机器人大多仍处于原理样机的研究上,或局限在室外危险物排除这种应用案例的应用上,尚未有机器人参与到矿难、地震、建筑物坍塌等实际灾难现场救援的报道。在2010年4月2日王家岭透水事故发生的过程中,中国科学院沈阳自动化研究所研制的水下机器人曾被带到现场,试图参与透水现场的探测任务,虽然最终没有采用,但也不失为一次有益的尝试,为透水事故探测救援积累了宝贵的经验。

  3 煤矿井下搜救机器人关键技术

  在设计救灾机器人时,应从系统总体要求出发,考虑救灾机器人的环境适应性,协调各分系统的技术关联,开展顶层设计,研究综合集成关键技术.在设计救灾机器人过程中应充分注重关键技术。

  3.1运动机构

  运动机构作为移动机器人的移动载体,直接影响到机器人的通过性和地形适应能力。煤矿搜救机器人的运动平台应尽可能适应多种复杂的井下地形条件,如废墟、泥地、沙地、台阶、陡坡、壕沟等,即具有较强的地形适应能力;除此之外,还要具有一定的运动速度和良好的运动学稳定性,尽可能减少倾覆或翻滚的可能[]。目前的搜救机器人运动机构种类较多,如轮式、履带式、蛇形移动机构等,不同的运动平台决定了各自的运动能力。轮式机器人速度快、效率高,但越障能力较差,复杂地形适应能力有限;履带式越障能力强,但存在速度慢、运动效率较低的缺点;蛇形机器人可以钻进狭小的空间,利用头部安装的摄像头传回图像信息,但也存在速度慢、机构复杂等缺点;足式机器人,如四足、六足等具有适应地形能力强的特点,能越过大的壕沟和台阶,但目前大部分足式机构存在速度慢、效率较低的特点;轮腿复合式机器人具有履带机器人的地形适应能力和轮式机器人的运动速度,但也存在结构相对复杂体积较为庞大等缺点;此外受到自然界生物的启发,各种特殊的仿生机构机器人也展现了美好的前景[]。综合考虑煤矿井下的地形环境和事故发生后可能存在的实际情况,采用具有较强地形适应能力的带辅助臂的复合履带方式是一种相对理想的运动机构,该方式在具有较强地形适应能力的同时,可以保持较小的体积,能够穿过相对狭窄的空间。

  除了上述需要考虑的因素之外,运动平台的设计必须可靠,以应对复杂的环境。比如煤矿搜救机器人设计时必须重点考虑防爆、防水、耐高温等。履带机器人也容易发生履带出轨脱落,导致机器人寸步难行。除了灵活的运动能力和可靠性设计外,搜救机器人还应考虑便携性。为了应对突发的矿难事故,提高搜救效率,搜救机器人应该具有较强的机动能力,必须在第一时间投放现场。搜索完一个目标地点,能尽快转移到下一搜救地点。体积过于庞大,除了具有更高的能耗和大大减小了平台通过能力之外,其运输过程也会给救援工作带来困难。

 3.2感知系统

  搜救机器人的主要功能包括搜索探测与救援,但目前世界各国搜救机器人的研究还大多集中于环境探测和幸存者搜寻的功能上。由于环境极度复杂,受困人员本身面临的困难复杂多样,对人员的救援工作目前还是一件非常困难的事情,因此,环境探测与人员搜索任务是目前搜救机器人的主要功能,其搜索与探测能力主要取决于其自身携带的传感器的类型与应用情况。作为搜救机器人的感知系统,传感器必须具备信息采集、信息存储与分析以及信息传输等功能,同时要求其具有较小尺寸、足够的分辨率和响应时间,以及很好的稳定性和可靠性等特点。

  对环境的探测主要目的首先是让搜救人员实时准确的了解事故后井下的综合环境情况,评估井下环境对幸存人员及搜救人员生命及健康的影响,考虑指派救护队员下井完成救援任务的可行性,以及为制定科学高效的救援方案提供必要的、可靠的井下环境参数信息。这就需要对井下的温度、气体组成情况如氧含量、有毒气体含量、可燃气体含量,以及井下的地形及地质结构的情况进行探测。其次,在进行环境探测的同时,当机器人深入事故现场后,应该具有对幸存人员进行搜索定位及人员情况的初步探测能力。最后,为保证机器人能够安全、有效的完成探测任务,机器人应该具有其自身情况及所处环境的感知能力,如机器人本体的姿态、温度、电池电量等本体参数,以及环境中的障碍物、火区、水区等危险环境和机器人所处的位置等信息。

[1] [2] [3]  下一页


本文关键字:机器人  机器人-智能车电子知识资料 - 机器人-智能车

《矿井下移动探测机器人平台研究》相关文章>>>