当节点接收到一个单播的消息,其APS层就会激活APSDE_DATA_inDICation原语处理消息。如果接收到的是一个确认帧,则APS层应该发送APSDE_DATA。
IndICation原语来接收命令,然后将温度信息通过APSDE-DATA.request原语发送回协调器,协调器同样通过APSDE-DATA.indication原语来接收信息。如图5所示。
3 系统测试
对网络的测试,主要集中于两个方面:功能测试,如组网,点对点的通信,系统整体测试等;静态测试,如节点的性能指标,程序的实现和数据收发的正确率等。
3.1 功能测试
首先将协调器程序烧入一个节点作为协调器;将传感节点程序烧入几个节点作为传感器终端。经系统测试,所有终端都能加入网络,并能进行正常的数据收发,功能测试显示系统完好。
3.2 节点测试
3.2.1 无障碍传输距离测试
测试在室外空旷的环境下进行,打开协调器,建立无线网络后,再打开一个终端节点设备,此设备作为温度和电压信息的参考节点。最后打开另一个终端节点,对该节点加以移动,分别选取5个测试距离,测试移动中该节点数据接收效果,数据由计算机保存记录,测试完毕统计分析数据。结果见表1。
3.2.2 有障碍传输距离测试
测试在室内隔墙的环境下进行测试,步骤与无障碍传输距离测试方法一样。打开协调器,建立无线网络后,在协调器一旁打开一个终端节点设备,此设备作为温度和电压信息的参考节点。最后打开另一个终端节点,对该节点加以移动,分别选取5个测试距离,测试移动中该节点数据接收效果,数据由上位机软件保存记录,测试完毕统计分析数据,如表1所示。
在进行无障碍传输距离测试和障碍传输距离测试,在有墙相隔的时候信号不强,这与天线设计有关,本文终端设备的天线为PCB天线,如果使用带杆状天气的射频模块,接收效果就能够更好。
4 结论
随着计算成本的下降以及微处理器体积越来越小,无线传感器网络开始投入使用,如环境的监测和保护、医疗护理、目标跟踪,本文所采用的基于CC2530无线传感网络系统设计方案不失为一种较为高效、节能、抗干扰能力强的廉价组网方案。提高该无线网络的传输距离、增强网络的自愈能力,提高ZigBee和Wi—Fi及其他2.4 GHz系统的共存时的互不干扰能力,将该方案推向工业现场是今后研究的重点。