您当前的位置:五五电子网电子知识电源动力技术电池技术长寿命电力储备用阀控式铅酸蓄电池的开发 正文
长寿命电力储备用阀控式铅酸蓄电池的开发

长寿命电力储备用阀控式铅酸蓄电池的开发

点击数:7914 次   录入时间:03-04 12:00:56   整理:http://www.55dianzi.com   电池技术

    新开发的产品适合于有效利用自然能源和夜间电力的长寿命电力储备用阀控式铅酸蓄电池。正极板采用耐腐蚀的板栅合金,减小了板栅的腐蚀变形,另外选用高密度的活性物质铅膏;为提高负极充电性能,采用石墨添加剂;新开发的电池组在使用时可通过金属柜结构有效地控制电池温度上升及电池间的温差,使循环寿命达4500次(25℃、70%放电深度),充放电效率87%。该产品在相关的电力储备系统经过2年零6个月的实车运行试验被确认为运行良好,实用毫无问题。

    1 前言

    近年来,人们越来越重视地球变暖等问题,在气候变化框架条约第3次缔约国会议上通过的京都议定书中具体地讲述了对以二氧化碳为主的温室效应气体削减目标的规定。

    日本国内的电力需求在工业领域要进一步节能化,而在民生用的消费用电又在增加,总体来看为增加趋势,因此,为达到削减的目标有必要采取彻底解决的办法。另外,电力需求量均集中在白天,但总体来看电力需求为削减状态,昼夜合二为一,电力需求差额不大。将夜间的剩余电力通过蓄电池储存,白天用电高峰时还可使用储能系统中的电能,这样可减少白天的发电量,这一方法可有效地削减昼夜电负荷正常化和二氧化碳的排放量。消费者可将低价的夜间电力有控制地使用于白天电力消耗的高峰时刻,这样可降低电费标准。

    目前作为电池的电力储备系统主要以铅蓄电池为主,也有比如钠硫电池、氧化还原电池、锂离子电池等系统,但是对于寿命性能、成本、设置空间等均存在着有待于进一步研发的各种课题。

    阀控式铅酸蓄电池有价格低、使用简单、可靠性好、安全性高等优点,但作为实用化电力储能用长寿命的电池还有待再开发。另外,近年来,太阳能发电、风力发电等与蓄电池组合的使用项目倍受关注,因此说,对长循环寿命阀控式固定型铅蓄电池的需求量将有所增长。

    公司现有循环寿命3000次的电池(LL系列),这种电池有待于进一步改良后作为储能系统使用。电力储备用阀控式铅蓄电池长寿命化的开发已通过2001年~2003年度的独立行政法人新能源、产业技术综合开发机构(NEDO)、产业技术实用化开发费用赞助事业的批准,开发研制循环寿命4500次的电池。以下报告为开发的具体内容。

    2 开发目标

    开发目标如下:

    (1)2V/1000Ah,2V/1500 Ah的大容量单体电池;

    (2)循环寿命4500次(25℃环境、70%放电量);

    (3)电池充放电效率87%。

    3 电池的长寿命化

    阀控式固定型铅酸蓄电池的结构示于图1。电池槽内插有正极板、负极板、玻璃纤维限液式隔板构成的极群、稀硫酸电解液及保持多孔体的活性物质。

    固定型铅酸蓄电池的主要用途是应急电源和UPS等备用电源,但与这一产品相比原有的LL型号电池(3000次循环),在正极活性物质高密度化、负极添加剂方面有相应的改良,采用了适用于卧式结构和卧式使用的限液式隔板,使充电条件达到了最佳化等,提高了循环寿命性能。3000次循环寿命电池的寿命试验结果示于图2。到达寿命终止电池的解剖研讨结果列于表1。

     

储能用长寿命LL-S阀控式铅酸蓄电池的开发 电源
储能用长寿命LL-S阀控式铅酸蓄电池的开发 电源

    循环寿命试验中达到3000次的电池解剖的结果显示影响寿命的主要原因是正板栅腐蚀、变形、正极活性物质成泥状化、负极板的硫酸盐化。为了提高循环寿命性能,以上述列出影响寿命性能的项目为重点进行改良。



www.55dianzi.com

    3.1 正极板

    为提高正板栅的耐久性能,必须抑制板栅腐蚀和使腐蚀变形减小,板栅合金的选择不仅是减少腐蚀,还应使腐蚀均一、变形减小,选择Ca、Sn添加量最佳的配比Pb-Ca-Sn合金。为减少正板栅的腐蚀变形,实施板栅腐蚀变形的模拟试验后,再决定板栅的设计方案。

    实际板栅腐蚀变形多半表现在表层的膨胀,因此为了做接近实况的模拟试验,从外部为板栅加热,由热量传导到板栅内部的情况构成板栅中的温度分布,将板栅温度上升导致的膨胀量,看作是铅腐蚀的膨胀量,再进行腐蚀变形模拟试验。解剖时的板栅温度分布示于图3。对板栅截面状况、粗筋和细筋条的变化进行模拟试验,其结果示于图4。通过试验得知板栅重量的增加限定在最小,并且与传统板栅相比,这种结构设计使板栅的腐蚀变形减小。

     

储能用长寿命LL-S阀控式铅酸蓄电池的开发 电源

   传统3000次循环的电池与新品电池循环寿命试验及板栅腐蚀量进行了对比,其结果示于图5。新品电池板栅的腐蚀量约是传统电池的65%,板栅的期待寿命是传统电池的1.5倍以上,循环寿命性能实现了4500次。因充电导致的体积变化等,使正极活性物质间的结合力减弱,导电性网格被破坏(活性物质软化、泥状化),这些通过提高活性物质密度,促使活性物质粒子间的结合点增强,有效地提高活性物质的牢固性。储能用长寿命LL-S阀控式铅酸蓄电池的开发 电源

     为评价活性物质,使用腐蚀变形小的板栅集电体的评价试验用小型号电池,在板栅上充填高密度的活性物质,进行电池循环寿命试验,结果见图6。图中确认耐充放电循环寿命性能在4500次以上。储能用长寿命LL-S阀控式铅酸蓄电池的开发 电源

      综上所述,腐蚀变形小的板栅集电体与高密度的活性物质组合,正极板循环寿命性能可达4500次以上。



www.55dianzi.com

    3.2 负极板

    铅蓄电池负极活性物质,因反复的充放电循环,使活性物质硫酸盐化和活性物质晶粒粗大化的表面积降低,导致容量下降。为了防止这一现象,采用在负极活性物质中添加石墨、木素、硫酸钡等添加剂。这些添加剂按照一定的种类和不同的比例进行添加,对负极板的放电性能、充电接受性能及寿命性能等有很大的影响。

    在硫酸铅内加入石墨,可提高硫酸铅表面的导电性能,并认为是在石墨表面发生反应。众所周知,超细晶粒石墨和添加量的增加能提高充电性能。石墨因种类的不同,其物理性能有很大的差异,因此可以认为石墨种类的不同,其效果也不同。

    为了对比不同种类的石墨对负极充电性能的影响,表2中列出了用于评价试验用小型电池的六种石墨对比。蓄电池进行限量充电的循环次数达1000次后,负极板中残留的硫酸铅与石墨种类关系的研究结果示于图7。石墨种类的不同,硫酸铅的蓄积量也不同,D、E石墨相对传统使用的石墨A而言,硫酸铅含量少,负极充电性能好。表2数据无法判断石墨的物理性能与负极充电性能的关系,石墨晶粒表面官能团量和种类的不同,其效果也不相同。石墨的作用功能目前仍在探讨中。

储能用长寿命LL-S阀控式铅酸蓄电池的开发 电源

     

    4 新品电池的结构特性

    4.1 单体电池

    4500次长寿命的LL-S电池的改良内容及目的列于表3。有关电池结构、使用条件的卧式放置、限液、电量管理的充放电控制,目前仍沿袭LL型电池的技术。

     

储能用长寿命LL-S阀控式铅酸蓄电池的开发 电源

    新品电池与传统产品的对比列于表4,产品的外观照片示于图8。与传统的循环寿命3000次的电池相比,电池的尺寸相同,重量约增加了8%,电池的期待寿命增加到4500次,是原来的1.5倍。电池槽材料选用耐药性、耐透湿性优良的聚丙烯树脂,端子为螺栓式,在电池盖上设计有插入成型的铅合金制极柱套,与端子部位焊接成形,并用环氧胶封口,可防止电解液渗漏的结构。这种电池的推荐充电方法见图9,单体电池的充电电压设定为2.42V,采用多阶段小电流充电及为防止过充电采用控制充电量的方式进行充电。

[1] [2]  下一页


本文关键字:开发  铅酸蓄电池  电池技术电源动力技术 - 电池技术

《长寿命电力储备用阀控式铅酸蓄电池的开发》相关文章>>>