您当前的位置:五五电子网电子知识电源动力技术电池技术蓄电池剩余容量预测方法 正文
蓄电池剩余容量预测方法

蓄电池剩余容量预测方法

点击数:7461 次   录入时间:03-04 11:55:23   整理:http://www.55dianzi.com   电池技术

    争议的出现除因统计方法的不同外,主要与试验用蓄电池本身以及内阻(电导)测试仪的精度有关。因为即使同厂家、同批次、同规格的蓄电池,其内阻(电导)也存在不一致性,这是由蓄电池生产厂家的技术水平决定的。且蓄电池内阻极小,SOC大范围变化时,内阻的变化也不大,测量仪器的精度如果达不到要求,将很难得出内阻与剩余容量的对应关系。文献[29]通过阻抗谱测量,指出欧姆内阻的变化可以正确反映SOC的变化,只是当SOC从16%递增到91%时,其欧姆内阻变化很小,约为0.6mΩ。并提出了利用当蓄电池内部阻抗从容性变到感性时,对应的激励信号频率与其SOC之间存在单调函数关系,且频率变化范围大这一发现,采用VRLA蓄电池的谐振频率来作为蓄电池SOC的传感参量,这一理论还处于研究阶段。同时,文献[30]提出在大规模使用蓄电池的情况下,以内阻(电导)作为蓄电池剩余容量及健康状况的(SOH)的指示器,通过选择内阻(电导)稳定的蓄电池来规范厂家的生产,而不是直接作为蓄电池荷电状态的精确指示器。

    从目前的文献、资料以及内阻(电导)检测产品来看[31][32][33][34],主要将内阻(电导)法应用于蓄电池失效预警,直接应用于SOC预测的很少(一般作为SOC影响因素之一与电压法、神经网络等方法结合使用)[36]。且文献[30]经过大量实验得出结论:单体电池的电导值为参考值的80%以上时,蓄电池正常,且容量在80%以上;当电导值为参考值的60%—80%时,其容量很可能不足80%,蓄电池处于“普通危险”状态,需要做全放电测试;当电导值为参考值的60%以下时,蓄电池处于“严重危险”状态,需要及时更换。

    3系统辨识及参数估计模型方法预测SOC

    2000年左右,系统辨识及参数估计模型方法开始被应用于蓄电池SOC估计,目前在国内外研究中比较热门。它主要是应用一些新的方法(主要是人工智能算法)对蓄电池进行系统建模,将影响SOC的各种因素综合到电池模型中,通过大量试验对模型进行系统辨识和参数估计,得到蓄电池某些参数与SOC之间的关系,进而估算SOC。比较常用的人工神经网络法、向量机法、模糊推理法以及卡尔曼滤波法等。

    3.1神经网络法

    由于蓄电池是一个复杂的非线性系统,对其充放电过程建立准确的数学模型难度较大。而神经网络具有分布并行处理、非线性映射和自适应学习等特性,可较好地反映非线性的基本特性,在有外部激励时能给出相应的输出,因此能够在一定程度上模拟蓄电池动态特性,估算SOC[36][37]。

    估算蓄电池SOC大多采用典型的3层人工神经网络[38][39]。一般直接采集蓄电池的放电电流、端电压以及温度或采用变电流组合测量方法,确定电动势和内阻作为神经网络模型的输入,SOC作为输出。其中输入、输出层神经元一般为线性函数;隐含层节点数目取决于问题的复杂程度及分析精度,可根据网络在训练过程中的收敛速度和训练完成后的误差来确定。人工神经网络法适用于各种蓄电池,但该方法的误差受训练数据和训练方法影响很大,而且实际使用中存在噪声干扰影响网络的学习与应用。从目前的文献来看,神经网络主要是理论方面研究。

    文献[40][41]将另一种神经网络——支持向量机(SVM)方法用于蓄电池SOC估计,避免了传统神经网络在训练时间、局部最优以及收敛速度方面存在的缺陷。而文献[42]则进一步提出利用相关向量机(RVM)对蓄电池SOC进行预测,比支持向量机预测精度更高,预测模型也更加稀疏,不过算法也更加复杂,需要占用较大的计算机资源。

    3.2模糊逻辑法

    模糊逻辑法是对蓄电池进行模糊建模,以系统的输入、输出测试数据为依据,不受先验知识,经验与行为所限制。该方法通常对作为模型的输入变量的参数(如电压、电流、温度、内阻等)进行模糊化处理,根据大量的蓄电池特性试验数据得到SOC与电流、电压、温度等因素之间的关系,设计模糊规则并进行模糊推理,经反模糊化处理估计电池SOC[43][44][45]。

    模糊逻辑方法的主要缺点是需要大量的实验数据,根据实验数据获得模糊推理规则和经验公式。目前该方法主要应用于仿真和理论分析,尚未应用于实际。

    3.3卡尔曼滤波法

    卡尔曼滤波理论的核心思想,是对动力系统的状态作出最小方差意义上的最优估计,它既适用于线性系统也适用于非线性系统[46]。

    在运用卡尔曼滤波法估算SOC时,首先要建立适合于卡尔曼滤波估计的电池模型,且模型须具备两方面特点:(1)能够较好地体现电池的动态特性,同时阶数不能太高,以减少处理器的运算量,便于工程实现;(2)模型必须能够准确反映电池电动势与端电压的关系,从而使闭环估计有较高的精度。常用的等效电路模型有Randle模型(见图1)、MassimoCeraolo模型、Thevenin模型、Shepherd模型等,其中各个参数都为待定参数,需要根据实验数据计算得到[47][48]。

图1Randles电池模型

    在实际应用中,卡尔曼滤波法通常与开路电压法以及安时法结合使用。其基本过程为:将模型中电容上的电压作为系统的状态,经卡尔曼估算出该电压后,利用模型中的数学关系求出电池电动势(或开路电压),最后由电动势与SOC的关系求出SOC。电池模型的卡尔曼数学形式为:

    状态方程:

(9)

    观测方程:

(10)

    安时法方程:

(11)

    系统的输入向量uk中,通常包含蓄电池电流、温度、剩余容量和内阻等变量,系统的输出yk通常为蓄电池的工作电压,蓄电池SOC包含在系统的状态量xk中,Ak、Bk由试验得到的参数确定,ωk、vk为系统噪声。估计SOC算法的核心,是建立一套包括SOC估计值和反映估计误差的、协方差矩阵的递归方程,协方差矩阵用来给出估计误差范围。方程(11)是电池模型状态方程,将SOC描述为状态矢量的依据。

    卡尔曼滤波在估算过程中能保持很好的精度,并且对初始化误差有很强的修正作用,对噪声有很强的抑制作用,目前主要应用于电流变化较快的混合动力汽车蓄电池的SOC预测。在卡尔曼滤波的基础上,文献[49][50][51]又将扩展卡尔曼与无色卡尔曼滤波方法用于估计SOC。卡尔曼滤波法最大缺点在于,其估计精度严重依赖于蓄电池等效电路模型的准确性,建立准确的电池模型是算法的关键。另一缺点是运算量比较大,必须选择简单合理的电池模型和运算速度较快的处理器。

    3.4其它方法

    文献[52]提到的线性模型法,利用线性模型对测量误差和错误的初始条件有很高的鲁棒性,以大量的电池充电放电实验为基础,建立SOC及其变化量电池端电压、电流的线性方程,见式(12)、(13)。该方法适用于小电流、SOC变化缓慢的情况,但这一特点也限制了其使用范围,目前实际应用中还未见到。

    其中,SOC(k)为当前时刻的SOC值;△SOC(k)为SOC的变化值;v(k)和i(k)为当前时刻的电压和电流。Β0、Β1、Β2、Β3是利用参考数据通过最小二乘法得到的线性模型系数。

    文献[53]提出利用非线性自回归滑动平均(NARMAX)模型逼近精度高、结构简单、收敛速度快等特点,以蓄电池工作电压和电流为模型输入,SOC的其它影响因素作为系统噪声,对蓄电池SOC进行实时估计,相对误差仅为1%,该方法的适用性还有待于进一步研究。其辨识模型见式(14),其中y(t)为SOC序列,u1(t)为电流序列,u2(t)为电压序列。

    文献[54]针对蓄电池内阻与剩余容量之间的非线性关系,采用了在线的灰色GM(1,1)模型群方法对混合动力汽车蓄电池单元的SOC进行预测。文献[55]则以安时法为基础建立SOC状态方程,提出应用鲁棒滤波算法来预测蓄电池的SOC。

    由上面所介绍的各种方法可以看出,无论是物理建模方法还是系统辨识与参数估计模型方法,都是根据蓄电池的可测量参数(主要是电压、电流、内阻以及温度等)与剩余容量之间的关系,通过大量的实验建立稳定的蓄电池系统模型来预测SOC。

上一页  [1] [2] [3]  下一页


本文关键字:蓄电池  电池技术电源动力技术 - 电池技术

《蓄电池剩余容量预测方法》相关文章>>>