图5 Non-input buffer ADC 接收链路设计举例 A –最少的器件牺牲些许的带内平坦度
图6为性能和平坦度相折中的网络架构,网络架构较图5复杂,但是80MHz信号带宽内平坦度远远好于上图中的简化版本设计。由于前端R-L-L-R架构的存在,这里吸收采样噪声的R-L//C-R 简化为R-C-R,C的取值以3.3pF为宜。
图6 Non-input buffer ADC 接收链路设计举例B 最优的带内平坦度
4.2 反馈链路拓扑架构
反馈链路处理信号带宽远高于接收链路,而性能要求则较接收链路低。为了满足带内平坦度的要求,R-L-L-R的平坦度调节电路必不可少。而R-C//L-R(R-C-R)采样噪声吸收电路所表现出的低通或带通特性限制了其在超宽带(BW>100MHz)的反馈链路中的应用。使得反馈链路中同样也存在着性能和带宽的折中。但考虑到反馈链路-10dBFs输入幅度下性能恶化有限(采样噪声随输入幅度的增加而增大),缺少采样噪声吸收电路的反馈链路的性能仍然满足系统性能要求。这里以Fs=245.76MSPS采样率,中频3/4 Fs 184.32MHz,带宽200MHz,100Ohm抗混叠滤波器负载应用为例。
图7为以牺牲些许性能为代价而取得最优带内平坦度的反馈链路前端匹配电路,R-L-L-R为带内平坦度调节电路。
图7 Non-input buffer ADC 反馈链路设计举例
5. 结论
Non-input buffer的ADC在高中频,超宽带,高负载抗混叠滤波器应用场景下,需要对前端匹配电路的设计进行特别的考量。针对接收和反馈链路的不同特性,有选择性的引入R-L-L-R平坦度调整电路,R-L//C-R采样噪声吸收电路,以期达到性能和带内平坦度的折中。
6. 参考资料
1. ADS58H40 datasheet
本文关键字:暂无联系方式综合通信技术,通信技术 - 综合通信技术
上一篇:“M2M”)通信应用的兴起与挑战