图3 AD9850与DSP的连接原理图
由于超声波在流体中传播,而流体中有较高的颗粒含量,造成超声波的衰减较大,所以信号的功率放大是十分必要的。
本文所用的超声波换能器采用收发一体结构,工作频率为640 kHz.超声波振子用圆形的PZT型材料制作,这样使换能器具有较好的温度稳定性和时间稳定性,需要较小的功率。换能器的晶片应与管壁呈45°安装,这样的好处是使换能器有较大的透射能力和较高的信噪比。
2.2.2 接收模块
接收模块主要由超声波换能器、信号放大电路、带通滤波器、混频器、低通滤波器组成。
通常接收到的超声波信号是非常小的,而一般需要采样的信号的幅值是5 V,所以必须对它进行放大。带通滤波器的作用是以640 kHz为中心频率,保留640 kHz左右的频率信号,尽可能减弱干扰信号。混频器的作用是降低信号频率,仅保留了发射的超声波与接收的超声波的频率差,这样不但降低了采集较高的频率的成本,不必使用很快的A/D来进行数模转换,而且减小了采集到的数据的误差。信号最后再通过低通滤波器,减弱混频产生的高频干扰。
2.2.3 处理与控制模块
处理与控制模块主要由DSP(TMS320F2812)、AVR(mega16)、液晶、键盘组成。
DSP在整个处理与控制模块中起到了关键的作用。它是系统的核心,流速的计算也是它来进行的。DSP芯片的优点就是具有强大的运算能力,能在较短的时间里完成复杂的算法。TMS320F2812是TI公司的一款用于控制的高性能、多功能、高性价比的32位定点DSP芯片,最高可在150 MHz主频下工作。它片内集成众多资源:存储资源Flash、RAM标准通信接口,如串行通信接口(SCI)、串行外设接口(SPI)、增强型eCAN总线接口,方便与外设之间进行通信。在TMS320F2812内部还集成了一个12位的ADC转换模块,最高采样速率达12.5 Ms/s;TMS320F2812片上还包括事件管理器(EV)、定时器、看门狗以及大量的用户可开发利用的GPIO口等资源。
从低通滤波器出来的信号进入到DSP芯片TMS320F2812的模/数转换器(ADC)进行模数转换。TMS320F2812的ADC的主要功能有;1)12位ADC采样内核包括两个采样保持电路;2)可设置同步采样或顺序采样模式;3)模拟输入电压:0~3 V;4)ADC工作在25 MHz时最高转换速率为ADCL K或12.5 MHz;5)16通道,多路输出;6)排序器可以设置为两个独立的8位状态排序器,也可以设置成一个16状态排序器;7)16个结果寄存器用与存储装换结果;8)多触发源启动转换;9)灵活的中断控制。TMS320F2812内部定时中断子程序进行数据采样,采集的数据送入环形数据缓冲区内,然后TMS320F2812对采样数据进行FIR数字滤波器滤波、FFT变换求其功率谱等处理得到多普勒频偏值,求得流速。
AVR通过SPI从DSP中读取流速数据,再根据用键盘设置的参数进而求得流量,然后在液晶里显示出来。
3 软件设计
软件设计主要采用C语言进行编写,再设计DSP的FFT算法时,可以使用汇编语育和C语言进行混合编写。DSP的编程工具为TI公司推出的CodeComposerStudio(CCS),该工具提供的实时分析和数据可视化功能把传统的DSP调试技术向前提高了一大步,大大降低了DSP系统的开发难度。
软件设计的总体思想是:DSP的作用主要是控制DDS芯片,然后发射超声波,对采集回来的数据进行模数转换,计算频移进而计算流速。AVR的作用主要是从DSP读出流速,然后计算流量。计算流量所需的管道流通截面积是可以改变的,可以根据实际情况用键盘进行变动。软件设计的主程序流程图如图4所示。
图4 软件设计的主程序流程图
4 仿真分析
图5为FFT运算后频谱的仿真图,它是在MATLAB上进行仿真的,是一组个数为128的信号采样数据经过FFT算法处理得来的。这组数据的主频率接近640 kHz,与原始信号是相符合的。
图5 FFT的频谱图
5 结论
本文设计了以DSP为核心的趣声波流量计,完成了整体的硬件设计和软件设计。用DSP来进行流速计算,保证了计算的精度和速度;使用AVR来辅助DSP进行控制与处理,一方面分担了DSP的工作,加快了数据处理速度;另一方面使流通截面积可以变动,使超声波流量计变得更加灵活,用于各种不同管道时更容易设置。
由于水平的限制,本文的系统方案还需要完善和改进,特别是要在流体测量温度对测量的影响和流体动力学两个方面进行分析,这对于提高超声波流量计的精度是十分重膏和必要的。另外,加入另一个频率的超声波收发处理模块,组成双频的超声波流量计,也能很好的提高精度。