您当前的位置:五五电子网电子知识单片机-工控设备嵌入式系统-技术将 RS-485 用于数字发动机控制应用 正文
将 RS-485 用于数字发动机控制应用

将 RS-485 用于数字发动机控制应用

点击数:7400 次   录入时间:03-04 12:01:58   整理:http://www.55dianzi.com   嵌入式系统-技术

I. 简介

数字发动机控制采用数字处理器来控制电动机的运转。一般情况下数字处理器可采用一种或多种反馈方式,使其构成一个闭环系统。这可比作模拟控制系统和开环传动系统。

许多应用都采用了数字发动机控制,包括存储设备(如:磁盘驱动器)、工业机器人、高精度半导体制造、打印机以及复印机等。


图1 :数字发动机控制框图

a. 发动机设备

数字发动机控制可采用多种类型的发动机。最常用的类型是超小功率旋转发动机。它们可以进一步分为AC、DC电刷或DC无电刷型,这主要取决于其整流方式。小型发动机的尺寸设计一般取决于框架尺寸和瓦功率。而一般像 AC 型这样较大的发动机,是根据其马力功率进行分类的。尽管旋转发动机是最常用的类型,但也可获得其他类型,如:线性发动机以及带各种传动装置的减速发动机(gearhead motor)。


图 2:旋转发动机

b. 反馈

为提供有关位置、速度、扭矩或传动系统其他动力属性的反馈,需要具备反馈传感器。最常用的反馈传感器可能是旋转编码器,它是由安装在发动机轴上、带有变化条带的转轮构成的。在发动机转动时,光传感器会检测条带的经过并生成电信号,控制器可利用这些信号来确定发动机的转动情况。其他类型的传感器为转速计、同步器和分解器,这些均是基于电感的传感器;另外还有基于电磁的霍尔效应传感器以及基于电阻的电位计。

无论采用哪种传感器方式,数字控制器必须重复采样传感器信号,以便不断了解系统的当前动力运转情况。根据系统对速度、动力响应及精度的要求,反馈采样率可超过每秒几千次采样。

c. 控制器

无论是数字控制器还是模拟控制器,都需要与系统的预定转动和实际动力进行比较,同时处理相关输入,来产生对传动装置的控制信号。如果采用数字控制器,会需要一些附加任务,包括系统启动例程、诊断程序、通信控制以及多个采样传感器。

数字控制器可能像专用计算机处理器般复杂,也可能如单芯片编程门阵列般简单。设计人员不仅可设计出具有为传动控制而优化的功能的数字信号处理器,还可设计出具有可变功能的微控制器,以便实现适应众多应用的最佳解决方案。请参见 www.ti.com 上的"数字控制"部分。

d. 数据传输

本节将重点讨论在发动机控制和传动控制应用中采用 RS-485 的优势。如下所述,该技术在与抗扰性、广泛的共模范围、充足的数据速率以及多点功能有关的这些应用中具有众多优势。其他应用也采用 RS-485 信令,以期利用这些相同优势。因此,诸如过程控制网络、工业自动化、远程终端、建筑自动化和安全系统等应用均广泛采用了RS-485,以便满足对强大可靠的远距离数据传输的需要。通常 RS-485 信令与 Profibus、Interbus、Modbus 或 BACnet 一起使用,这些协议都是针对最终用户的特殊需求而量身定做的。

如果 R-485 的优势不足以满足需求,还可以采用其他信令技术。例如,RS-232 或 RS-422 信令技术在某些应用中可能是非常适用的,而在另外一些应用中可能会首选CAN(控制器局域网)或 EtherNet/IP(行业协议),因为它们可与现有网络进行兼容。对于高速应用以及对长途及共模电压要求不高的情况,M-LVDS可提供较低的功耗。在 www.ti.com 上的应用手册"总线方案对比"中讨论了多种替代方法。

e. 基本拓扑

在所示的传动控制应用示例中,需要特别注意多个不同接口的数据传输问题。下表说明了信号的多种分类并总结了信令速度和信号电平的关键特性。

表1:典型传动控制系统中的信号
信号 说明 典型速度 典型电平 传动指令 数字(脉冲或二进制编码) 可达 10Mbps TTL 或 CMOS 逻辑 模拟 达到系统的伺服带宽 10V 典型范围 传动反馈 数字(脉冲或二进制编码) 可达 10Mbps TTL 或 CMOS 逻辑 位置反馈 同步器、分解器(正弦) 可达 10kHz >20Vac 编码器、数字输出(A、B 及索引脉冲) 可达 10Mbps(内插之后) TTL 或 CMOS 逻辑 驱动电压 发动机线圈电压,1~3相 如果是 DC 或AC,则可达 1kHz;如果是PWM,则可达 100kHz 可达 200V,取决于发动机功率和绕组 整流信号 二进制信号,通常为3相,用于根据绕组位置来确定发动机的整流 可达 3kHz TTL或CMOS 逻辑 工具/负载指令 专用指令信号,通常与运动轨迹保持一致 专用的 专用的 传动装置限制/状态 限位开关、连锁装置、自动寻的传感器(homing sensor),等 可达 1 kHz TTL、CMOS 或 DC,可达 24V

该表显示了任何数据传输方案都必须具有广泛的操作范围,以便适应各种数字传动控制需要。RS-485信令技术由于速率范围介于 DC~10MHz 以上,并且具有强大可靠的信号电平,因此可很好地满足大多要求。图3显示了这些信号。请注意:该图显示了单轴系统;多轴系统可共享相同的控制器并把相关机构(mechanICs)连接到相同的工具或负载上。


图3:发动机控制系统中的接口(单轴)

根据特定应用的物理安排,控制器、伺服放大器、发动机和负载之间可能会有比较大的距离。除了距离之外,在设计这些系统时还应该考虑其他因素,如:电气噪声、温度和线缆故障等。尽管存在距离或环境条件干扰,但有效数据传输的目的仍是在这些部件之间提供可靠通信。

II. 数据传输问题与485的应对方法

数字传动控制应用对在实现系统部件之间有效、可靠的通信方面面临众多挑战。根据其内在性质,这会涉及到机电传动装置,而这种装置会产生电气噪声及较高的电流电平。安全性和可靠性进一步要求通信通道必须非常可靠,以便控制运动机构。另外与运动应用相伴而来的还有对线缆路由的限制,这需要更长的布线。伺服系统的稳定性对信令速率也有额外要求。

a. 环境

i. EMI/抗扰性

电磁干扰(EMI)会破坏发动机控制系统中的信号。典型的EMI源是发动机驱动电压、发动机电刷噪声、工具源、以及来自时钟、显示器和其他计算机组件的电气噪声。在模拟系统中,噪声信号可能会造成有害的运动或不稳定性。由于二进制编码的内在信噪比,数字系统的主要问题是寄生脉冲,这可能会被解释成指令或反馈信号。

RS-485 信令标准包含了非常适于解决这些 EMI 问题的功能。RS-485 信令具有平衡及差分的特点,一般通过双绞线进行传输。它会导致任何电气噪声都会被等同连接到两条线路上。因此,由于接收器对差分电压很敏感,这种噪声会被消除,而电压差会继续携带该信号信息。

RS-485 信号电平进行了定义,因此对于任何有源驱动器,一条线路为高电平驱动,另一条为低电平驱动。两条线路上的电压差必须高于 1.5V 或者低于 -1.5V,以便传输有效状态。这适用于所有有效负载条件。

接收器规格对于EMI噪声消除极其重要。485标准要求在接收差分信号强度达到200mV以上时对有效状态进行检测。这种灵敏度可以弥补线缆中的损耗,而这种损耗会在驱动器端将信号幅度降至1.5V以下(或更低)。

接收器磁滞虽然在485标准中未予以规定,但也非常重要,它是低电平到高电平以及高电平到低电平传输阈值之间的差分。


图4:具有及没有磁滞的接收器功能

因为不存在完美平衡的线对,因此 EMI 源会产生以下差分噪声。如果没有接收器磁滞,无论是由于有效信号改变还是噪声响应,接收器均会在每次输入交叉(0差分电压)时改变状态。因此,需要磁滞来避免寄生脉冲,在空闲总线或过渡期间更是如此。这些寄生脉冲会被解释成编码器计数、阶跃指令(step command)或传动装置信号,其取决于它们在系统中出现的位置。接收器磁滞值越高就越能抵抗EMI噪声。一般RS-485接收器的磁滞为40~60mV,而磁滞达到100mV的接收器可应对尤为恶劣的电气噪声环境,如:数字发动机控制。


图5:磁滞可消除寄生过渡

ii. 接地电势/共模

另一个可影响传动控制应用中通信的电气挑战是驱动器与接收器节点之间的接地参考参考。电流负载(如:高功率工具可能产生的电流负载)会造成这类问题。由于发动机反向 EMI、设备故障以及附近闪电产生的二次浪涌(secondary surge),会出现局部电压浪涌。

通过示例可说明在传动控制应用中如何会出现接地偏移。设想一个典型的发动机与放大器/控制器,它们采用一定长度的线缆相互连接来进行通信并提供电源。

如果节点1与2之间的 24V 电源采用50米 14 AWG 线缆连接的话,则RCOPPER 大约为 0.5Ohm。在正常操作中,发动机电流低于 2A。但是在失速故障(stall fault)情况下,电流可能激增到 10A。由于接地线上的压降,这会导致 GND1 与 GND2 之间 5V 的压差。因此,任何引用 GND1 的信号在节点2被接收到时都会出现 -5V 的偏移。由于所有信号都会受到普通偏移的影响,因此其称为共模电压偏移。

尽管这种情况会阻止与单端数据传输之间的可靠通信,但 5V 接地偏移仍处于标准 RS-485 共模电压 (VCM) 范围之内。由于节点1的差分信号进行了同等偏移,因此差模信号仍然有效,而 RS-485 接收器也将可靠地接收正确的信号。

[1] [2]  下一页


本文关键字:发动机  RS-485  嵌入式系统-技术单片机-工控设备 - 嵌入式系统-技术

《将 RS-485 用于数字发动机控制应用》相关文章>>>