您当前的位置:五五电子网电子知识单片机-工控设备DSP/FPGA技术面向超低功耗设计的微控制器功效优化方案 正文
面向超低功耗设计的微控制器功效优化方案

面向超低功耗设计的微控制器功效优化方案

点击数:7883 次   录入时间:03-04 12:01:58   整理:http://www.55dianzi.com   DSP/FPGA技术

  超低功耗MCU还需要多种睡眠模式。例如,一个传感器应用可以监控温度,直到它超过阈值。如果在监控期间整个MCU处于工作模式的话,所消耗的能量会比实际需要的更多。支持不同的睡眠模式,允许开发人员关断设备的不同部分,实现更佳的节能效果(见表1)。

表1. 超低功耗MCU具有多种睡眠模式,因此在仅需有限功能而无需整个MCU以大功率工作模式工作的时候,开发人员可在不同的低功耗闲置模式下配置一个超低功耗MCU。

超低功耗MCU具有多种睡眠模式

  ATtiny43U架构中有数种架构创新技术,可供开发人员用于提高工作模式和睡眠模式下的功效:

  精确的电源电压:虽然MCU可以接受单电压电源,但在架构上它可能有多个不同的内部电压。这样的设计方法带来了低功效,因为动态功率高于预期。若所有模拟外设、闪存、EEPROM及RAM都工作在同一个电压下时,设备的总体功耗便会降低。

  泄漏电流最小化:温度、电源电压和工艺技术都会影响泄漏电流。超低功耗MCU不是对现有架构进行修改,使其能够在更低电压之下工作,而是必须以功效为理念从头开始设计,而爱特梅尔的pICoPower AVR 微控制器 系列就是一个示例。

  低功率欠压检测(Brown-Out Detection, BOD):虽然零功率欠压检测器不会消耗功率,但它们的响应速度也很慢,可能需要足足一毫秒的时间来检测阈值以下的电压,这就给MCU带来了风险。相反地,“睡眠BOD”却能够在2微秒内检测出欠压情况,而耗电量只有20μA。由于MCU在深睡眠模式下无需欠压保护,这时可关断睡眠BOD,并达致零功耗。采用这种方法,开发人员便能够同时实现低功耗和快速响应。

  数字输入中断寄存器(DIDR): 外设(比如ADC)的多路输入,可以提高小引脚数目器件的设计灵活性。不过,在加载VCC/2范围内的电压时,含有输入缓冲器的晶体管将出现电流泄漏。这时,若使用专门的输入中断寄存器,在每一个模拟输入中加入一个禁止位,开发人员便可以单独禁止输入缓冲器,避免泄漏的发生。

  时钟门控:时钟门控技术可以降低任何时钟域的切换频率。任何没有使用的时钟都可以进行门控,从而避免无谓的功耗。

  省电寄存器:虽然多种睡眠模式可简化功率管理,但它们往往只能够启动或关断整个外设部分。这样,即使只使用一个外设,其它的外设也必须处于工作状态下。省电寄存器(Power Reduction Register)可让开发人员能够完全单独控制各个外设模块的开关。在工作模式下禁用某个外设模块可以降低5-10%的总功耗;在闲置模式下则可节省10-20%。

  闪存采样:传统的闪存设计是要在工作模式下维持激活状态。然而,在时钟速率较低时,闪存读取时间将小于时钟周期。闪存采样技术就是让闪存以10ns数量级的速度对阵列内容进行采样,然后立即禁用,从而降低平均功耗。

  快速唤醒:如果系统被唤醒速度很慢,就不得不以更长时间处于工作模式下,以适应更长的延时,防止实时事件处理的中断。换言之,MCU被唤醒的速度越快,它停留在睡眠模式下的时间就越长。

  在评估不同的超低功率MCU规格时,开发人员必须头脑清醒,从而确保等效测量结果的比较。例如,应该考虑到:

  某个范围内的效率:效率规格通常是根据MCU的最佳测量(最佳点)结果而不是负载电流电压上的结果给出。某个应用的典型工作范围可能使其位于较低效率的曲线上。此外,效率必须在电池的整个电压降范围上进行估算。

  电池的安全工作范围:虽然MCU的耗电量也许相当小,但如果无法足够精确地测量电压和温度,那么电池限值就可能被超过,导致电池受损及使用时间缩短。在确定设备可安全使用的电池能量时,精度是一个关键因素。

  调节器低效:无升压调节器的MCU有更高的效率规格,因为转换损耗隐藏在外部调节器中。此外,在单电池设计中,如果MCU没有集成调节器,切记把外部升压调节器的成本和设计复杂性考虑在内。

  设备整个使用范围内的效率:在驱动大电流时,MCU的效率可能很高,但除非它有多个工作模式,否则在驱动低电流时,它的效率会很低。因此,如果应用并非经常需要大电流能力,总体效率便会降低。

  规格是利用单个还是多个电池测得:某些MCU规格会随着所用电池的数量而改变。例如,如果有多个电池,便可以避过使用内部升压调节器,从而提高效率。反之,在只使用单个电池时,利用多个电池获得的各种规格(比如唤醒时间)可能会降低。

  开发环境的成熟度:实现超低功率需要架构层的创新。基于全新架构的超低功率MCU常常最多只能提供仍在开发中的有限设计工具。由于软件开发是最重要的成本因素之一,设计工具的稳定性、完整性和功能性,在帮助开发人员有效地管理功耗,以及快速把产品推向市场时发挥了举足轻重的作用。

  图5. 利用 STK600 和ATtinyx3U顶层模块等演示工具套件,开发人员可测量实际工作条件下的功效。这些工具套件让开发人员能够全面使用ATtiny43U的功能和Ateml丰富成熟的开发工具套件来测试单电池工作,获得高亮度LED的功率曲线,调节功率阈值,从而在安全范围内充分利用电池的最大容量。

利用STK600和ATtinyx3U顶层模块等演示工具套件

  确定MCU功耗如何“超低”的方法之一,是自己对其进行测量。演示工具套件(Demo Kits)为测试MCU在实际工作条件下的效率以及利用其功能集提供了行之有效的手段。例如,只要把ATtinyx3U顶层模块(top module) 连接在STK600开发板上,开发人员便能够全面使用ATtiny43U的功能和Atmel全面的开发工具套件(见图5)。利用该模块,开发人员可以测试单电池工作的限值,在直接驱动高亮LED的同时设定功耗轮廓,以及驱动集成式升压调节器的自动关断和上电功能,以调节功率阈值,在安全范围内充分利用电池的最大容量。

  本文小结

  单电池设计无需备用电池载荷,而备用电池往往正是超低功率系统中最重和体积最大的组件。集成了片上调节器并具有可配置模式的MCU ,可以有效弥补MCU的极小电源电压和标准单电池技术的典型输出电压之间的差距,使开发人员得以把已有负载条件及电池电压下的功耗降至最小。只需一个电池,无需外部调节器,凭借低至0.7V的电池耗电能力,以及用于LED和小型电机的大电流能力,设计人员便能够以最低的成本、绝对超低的功耗设计出紧凑型的电池供电设备。

上一页  [1] [2] 


本文关键字:控制器  DSP/FPGA技术单片机-工控设备 - DSP/FPGA技术

《面向超低功耗设计的微控制器功效优化方案》相关文章>>>