您当前的位置:五五电子网电子知识变频技术变频电源感应加热变频电源综述 正文
感应加热变频电源综述

感应加热变频电源综述

点击数:7993 次   录入时间:03-04 11:59:53   整理:http://www.55dianzi.com   变频电源
双频电源一般是指高频与超音频组合,例如超音频40 kHz和中频0.5 kHz 组合,这样的感应加热电源不但效率高,而且更适应处理不同透入深度的工件。
感应透热方面,工频电源和中频电源在市场上同时都在应用。在中频电源未发展起来的前20年,工频电源在感应透热和熔炼方面起着主导作用,现正在逐步退出市场。两种电源的区别在于工频电源是由50 Hz 输出,频率不变,功率的调节靠前端的变压器抽头调输出电压达到调功率的目的。由于负载是一相,输入是三相电,所以电源内有三相调平衡装置;工频电源功率因数可补偿到1。中频电源是众所周知的典型的AC-DC-AC变频结构,即先把三相工频电源整流成单相直流,滤波后再逆变为各种频率的中频单相交流电源,供给负载感应线圈。
一般椎300 mm 以上的金属棒料、锭料透热,大型轴承表面处理多选用工频电源;椎300 mm 以下的金属棒料等多选用中频电源。但也有例外的情况,如2005年公布的国家科技进步一等奖第六项“100 MN铝挤压设备技术”,其中用的是2 600 kW 中频加热电源,炉子加热的是椎560 mm×1 950 mm 铝锭,属于国际上特大型设备之一。该项目采用计算机控制,梯度加热,还设计了297 mm×279 mm×580 mm 钢锭透热装置,用的中频电源是2 400 kW,400 Hz,加热温度达到1 300℃。
国内还有几台不同功率的电源在同一透热线上联合工作的情况,这些电源功率从2 000 kW 至几百kW,每个电源负担几个加热线圈,完成一个区域的加热。几个电源和各自若干个线圈组合起来,达到了整个生产线的感应加热要求。
感应熔炼方面,近10年发展特别快。10年前,5 t以上无心感应熔炼炉很少见,基本上都配的是工频
电源。中频炉因电源功率小,所配炉子大多数都在2 t以下。现在已生产出的无心感应炉有5 t,7 t,10 t,15 t,20 t,25 t,30 t,35 t,40 t 熔炼炉,10 t熔铝炉(相当于30 t熔铁炉体积),70 t铜保温炉(见图1)。这些无心感应炉所配电源,少数电源功率器件是IGBT,其余基本上都采用的晶闸管功率器件。利用管子的串并联技术,电源装机容量已接近20 MW,利用多个电源联合能使输出功率更大。

为适应熔炼炉工艺中熔炼和保温工艺的同时需要,国内还开发出了双供电变频电源:一台电源同时输出功率到两台炉体线圈上,这样可使一台变频电源的功率能灵活的分配给两台炉体,即把一台电源的大功率分配给熔炼炉,余下小功率分配给保温炉。
两台炉的功率可自由互补的调整,整体不超过电源输出总功率,也可以同时将小功率输出到两台炉体用以保温。市场上称这种电源为DX中频电源,俗称“一拖二”中频电源。国内“一拖二”电源的电路结构是建立在逆变串联谐振电源的基础上的,前端电路是可控或不控的三相整流电路;中间是直流电路,由电容进行滤波;后端电路由两个独立的半桥串联逆变谐振电路进行逆变,输出两路输出频率和功率可各自调节的中频电压。“一拖二”中频电源功率器件有选晶闸管的,也有选IGBT的,这两种电路都有成熟产品在工业现场运行。这里特别要说明的是“一拖二”变频电源在国外主电路有两种形式:美国应达、比乐电炉公司开发的为串联谐振的“一拖二”;德国容克、ABP公司生产的是并联谐振的“一拖二”。单机容量功率一般在1MW到10 MW。“一拖二”电源尽管市场需求量不大,但很有卖点,是代表感应电炉公司电源开发能力的标志。
目前,感应加热领域技术先进性标志主要表现在下面几点。
1)高频电源采用半导体功率器件,一般是输出功率越大,技术越先进。
2)感应熔炼中频炉,电源功率越大,整流的脉波数较多,如18、24 脉波,配置的炉体越大,说明技术越先进。
3)真空感应炉,一般是吨位越大技术越先进。
4)特种感应加热,被加热金属温度越高或温度控制的精度误差越小,其技术含量越高。
5)感应加热的双供电电源(一拖二)和多供电电源(一拖多),一般是功率越大,拖的炉子越多,技术含量越高。
6)感应加热、熔炼、淬火过程的计算机软件对其系统的检测、控制、管理的简单化、傻瓜化、智能化、网络化和故障自诊断,加上触摸屏技术的采用,都是感应加热技术先进性的标志。
4 感应加热电源的发展趋势
随着电力电子功率器件的大容量化,高频化,电子技术装置的控制由模拟向数字化,自动向智能化发展,感应加热电源的发展趋势呈现以下几个方面的特点。
1)高频化感应加热电源中频段主要采用晶闸管;超音频段主要采用IGBT;高频频段,原来是SIT,现在主要发展MOSFET电源,采用IGCT的电源也开始亮相。高频电源的需要催生了新的功率器件,而新的器件又反过来促进了高频电源的发展。高频电源由于对功率器件、相关元件,以及布线、结构、接地、屏蔽都有要求,一般很难把功率作大、频率作高,所以这方面仍有许多应用技术需要进一步探讨,开发。
2)大容量化从电路原理角度来看,感应加热电源的大容量化,如几十MW,几百MW,都是可以实现的,但事实上大功率电源要受制于目前电力电子功率开关器件的限制。目前解决电源大容量化,有以下三种技术途径。
其一,是功率器件进行串并联方式。功率器件串联增加耐压水平,并联解决大电流问题,这种方法主要是要处理好串联器件的均压问题和并联器件的均流问题。由于电子器件制造工艺和参数离散性,所以功率器件只能进行有限的串、并联。串并联功率器件太多,装置的可靠性就无法保证。现在工业现场运行的1 000 kW(1 MW)至10 MW的感应电源大多采用的是功率器件的串、并联技术。
其二,是电源整流桥电路,或逆变桥电路的桥与桥之间的串、并联。整流桥的并联可以增大电源的电流输入,整流桥串联可以提高整流输出电压,两者都对改善谐波有利。一般情况,整流桥串、并联数越多,对改善谐波越有好处!整流桥的并联要解决的是各桥的均流问题,串联解决的是各桥间的均压问题。多逆变桥的串并联也是常采用的技术,比单纯的功率器件串、并联提高功率更有实际意义。事实上,超大功率电源都是用了逆变桥组成的复合逆变桥路技术。即把原来逆变桥看作一个模块或单元,利用这些模块或单元组成新的逆变桥路。这样无疑增加了控制电路的复杂性和难度,可以采用计算机控制技术达到这种电路需要的同电压,同电流,同相位,同频率等特殊参数条件的控制需求,最终达到功率输出更大化。国内由双变压器双电源并联的24脉波,功率达20 000 kW,200 Hz 的中频电源(配40 t 感应熔炼炉系统)如图2所示。

其三,是多个独立电源串、并联的组合。这个概念不难理解,主要技术是解决好各独立电源间协同工作的问题。目前,超音频以上的小功率电源,把一个单机看作一个串并联单元或模块,多个单元通过串并联后提高功率是一项非常有意义的研究。这种产品市场潜力很大。
3)主电路的拓扑结构的多样化国内市场的感应加热电源主电路拓扑形式用的最多,技术相对最成熟的线路是逆变并联电源(即补偿电容和感应线圈相并联形式),如图3所示。这种电源的主要特点是保护功能易实现。
对偶于并联电源的还有串联电源拓扑形式,如图4所示。

串联电源的保护功能实现起来难一些,主要是利用限压和功率管死区设置技术。控制槽路的过压和逆变桥臂的直通问题。
以上全桥逆变功率器件除了用KK 快速晶闸管外,还可用其它功率器件,如IGBT等。
还有一种形式用的比较多的形式半桥逆变串联,如图5所示。这是“一拖二”感应加热电源用得最多的拓扑结构。

上面所介绍的感应加热电源主电路结构中,除第一种———并联结构市场用得最多,技术相对成熟外,其它两种主电路结构形式的控制回路技术还正在进一步的发展中。
双供电电源除采用串联谐振电路外,并联谐振电路的双供电电源也是国内的一个技术开发点。
为了减少整流电路的谐波量,国内在推广用IGBT代替全桥整流的晶闸管,应用了PWM 和矩阵等控制技术;也有用斩波电路来调电源的功率。这些因技术和经验的原因,产品的市场尚未推广开。
4)负载匹配感应加热电源和负载感应线圈及补偿电容构成了一个有机体,不可分割。负载的变化,或负载阻抗匹配的是否合适,会直接影响电源的额定功率;频率是否能达到设计的目标,也会影响感应加热的效率。感应线圈(负载)的设计计算十分复杂,要设计出一个满意的负载线圈并非易事。目前采用的计算方法是忽略次要参数,或依靠经验修正过的公式来设计,有较大误差。今后为方便这方面的设计,急需要在理论指导下建立精确的数字模型,特别是利用计算机的仿真技术,以便更大范围地适应各种型式负载的计算精度。在国外,特别是美国,在负载感应器(线圈)用计算机辅助设计和仿真方面已开发了专用的软件,值得我们借鉴。

上一页  [1] [2] [3]  下一页


本文关键字:变频电源  变频电源变频技术 - 变频电源