您当前的位置:五五电子网电子知识电工技术电工文摘高频开关电源设计中的电磁兼容性问题研究 正文
高频开关电源设计中的电磁兼容性问题研究

高频开关电源设计中的电磁兼容性问题研究

点击数:7719 次   录入时间:03-04 11:45:41   整理:http://www.55dianzi.com   电工文摘
    在实际使用中,由于设备所产生的共模和差模的成分不一样,所以,滤波电路可适当增加或减少滤波元件。具体电路的调整一般要经过EMI试验后才能有满意的结果,安装滤波电路时一定要保证接地良好,并且输入端和输出端要良好隔离,否则,起不到滤波的效果。

    图6是两种滤波电路,它们的滤波效果如图7实验曲线所示。

(a)滤波电路1

(b)滤波电路2

图6    两种滤波电路

①为加滤波器电路1    ②为加滤波电路2

图7    两种滤波电路效果实验曲线

3.2    辐射EMI的抑制措施

    要降低辐射干扰,可应用电压缓冲电路,如在开关管两端并联RCD缓冲电路,或电流缓冲电路,如在开关管的集电极上串联20~80μH的电感。

    功率开关管的集电极是一个强骚扰源,开关管的散热片应接到集电极上,以确保集电极与散热片之间由于分布电容而产生的电流流入主电路中。为减少散热片和机壳之间的分布电容,散热片应尽量远离机壳,如有条件的话,可采用有屏蔽措施的散热片。整流二极管应采用恢复电荷小,且反向恢复时间短的,如肖特基管,最好是选用反向恢复呈软特性的。另外,在肖特基管两端套磁珠和并联RC吸收网络均可减少干扰,电阻、电容的取值可为几Ω和数千pF,电容引线应尽可能短,以减少引线电感。

    负载电流越大,二极管反向恢复的时间也越长,则尖峰电流的影响也越大。采用多个二极管并联来分担,可以降低短路尖峰电流的影响。

    开关电源必须屏蔽,采用模块式全密封结构,一般用1mm以上厚度的镀锌钢板,屏蔽层必须良好接地。在高频脉冲变压器初、次级之间加一屏蔽层并接地,可以抑制干扰的电场耦合。将高频脉冲变压器、输出滤波电感等磁性元件加上屏蔽罩,可以将磁力线限制在磁阻小的屏蔽体内。

    例如,对辐射干扰超过标准限值20dB的某开关电源,采用了如下一些在实验室容易实现的措施进行了改进:

    1)在所有整流二极管两端并联470pF电容;

    2)在开关管G极的输入端并联50pF电容,与原有的39Ω电阻形成一RC低通滤波器;

    3)在各输出滤波电容(电解电容)上并联0.01μF电容;

    4)在整流二极管管脚上套一小磁珠;

    5)改善屏蔽体的接地。

    经过上述改进后,该电源就可以通过辐射干扰测试的限值要求。

3.3    传导骚扰的解决方法

    开关电源的传导骚扰通过输入电源线向外传播,既有差模骚扰、又有共模骚扰。传导骚扰的测试频率范围为0.15~30MHz,限值要求如表1所列。

表1    传导骚扰限值表 电源端口 频率范围/MHz 准峰值dB/μV 平均值dB/μV A级 0.15~0.5 79 66 0.5~30 73 60 B级 0.15~0.5 66 56 0.5~5 56 46 5~30 60 50

    在0.15~1MHz的频率范围内,骚扰主要以共模的形式存在,在1~10MHz的频率范围内,骚扰的形式是差模和共模共存,在10MHz以上,骚扰的形式主要以共膜为主。差模骚扰的产生主要是由于开关管工作在开关状态,当开关管开通时,流过电源线的电流线性上升,开关管关断时电流突变为零,因此,流过电源线的电流为高频的三角脉动电流,含有丰富的高频谐波分量,随着频率的升高,该谐波分量的幅度越来越小,因此差模骚扰随频率的升高而降低,输出回路的滤波电路如图8所示,电容C5与电感L3组成低通滤波器,差模传导骚扰主要存在低频率段。

图8    输出回路的滤波电路

    产生共模骚扰的主要原因是电源与大地(保护地)之间存在分布电容,电路中方波电压的高频谐波分量通过分布电容传入大地,与电源线构成回路,产生共模骚扰。如图8所示,L、N为电源输入,C1、C2、C3、C4、C5、L1、L2组成输入EMI滤波器,DB1为整流桥,VT2为开关管,开关管安装在散热器上时,开关管的D极与散热器相连,与散热器之间形成一个耦合电容,如图8中的C7所示,VT2工作在开关状态,其D极的电压为高频方波,方波的频率为开关管的开关频率,方波中的各次谐波就会通过耦合电容、L、N电源线构成回路,产生共模骚扰。电源与大地的分布电容比较分散,难以估算,但从图8来看,VT2的D极与散热器之间耦合电容的作用最大,从DB1到电感L3之间的电压为100Hz,而从L3到VD1和VT2的D极之间的连线的电压均为方波电压,含有大量的高次谐波。其次L3的影响也比较大,但L3与机壳的距离比较远,分布电容比开关管和散热器之间的耦合电容小得多,因此,我们主要考虑开关管与散热器之间的耦合电容。

3.4    接地技术的应用

    “接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。“地”的经典定义是“作为电路或系统基准的等电位点或平面”。

3.4.1    设备的信号接地

    设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。在这里介绍浮地和混合接地,另外,还有单点接地和多点接地。

    1)浮地采用浮地的目的是将电路或设备与公共接地系统,或可能引起环流的公共导线隔离开来。浮地还可以使不同电位间的电路配合变得容易。实现电路或设备浮地的方法有变压器隔离和光电隔离。浮地的最大优点是抗干扰性能好。浮地的缺点是由于不与公共地相连,容易在两者间造成静电积累,当电荷积累到一定程度后,可能引起剧烈的静电放电,而成为破环性很强的骚扰源。一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。注意控制释放电阻的阻抗,太低的阻抗会影响设备泄漏电流的合格性。

    2)混合接地混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度di/dt信号存在的点。

3.4.2    设备接大地

    在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。设备接大地的目的是:

    1)保证设备操作人员人身的安全;

    2)泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定;

    3)避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。

    由此可见,设备接大地除了是对人员安全、设备安全的考虑外,也是抑制骚扰发生的重要手段。

3.5    屏蔽技术

    抑制开关电源产生骚扰辐射的又一种方法是屏蔽,目的是切断电磁波的传播途径,用电磁屏蔽的方法解决电磁干扰问题不会影响电路的正常工作。它用电导率良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽。为了防止脉冲变压器的磁场泄露,可利用闭合环形成磁屏蔽,另外,还要对整个开关电源进行电场屏蔽。屏蔽应考虑散热和通风问题,屏蔽外壳上的通风孔最好为圆形多孔,在满足通风的条件下,孔的数量可以多,每个孔的尺寸要尽可能小。接缝处要焊接,以保证电磁通路的连续性,如果采用螺钉固定,注意螺钉间距要短。屏蔽外壳的引入、引出线处要采取滤波措施,否则,这些会成为骚扰发射天线,严重降低屏蔽效果。若对电场屏蔽,屏蔽外壳一定要接地,否则,将起不到屏蔽效果;若对磁场屏蔽,屏蔽外壳则不需接地。对非嵌入的外置式开关电源的外壳一定要进行电场屏蔽,否则,很难通过辐射骚扰测试。对于开关电源来说,主要是做好机壳屏蔽,高频变压器屏蔽,开关管和整流二极管的屏蔽,采用光电隔离技术。功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。器件安装时需要用导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断射频干扰向输入电网传播的途径。为了抑制开关电源产生的辐射电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。

上一页  [1] [2] [3]  下一页


本文关键字:开关电源  高频  兼容性  电工文摘电工技术 - 电工文摘