您当前的位置:五五电子网电子知识电工技术电工文摘谐振软开关技术及其在逆变电源中的应用 正文
谐振软开关技术及其在逆变电源中的应用

谐振软开关技术及其在逆变电源中的应用

点击数:7693 次   录入时间:03-04 11:59:12   整理:http://www.55dianzi.com   电工文摘

32谐振过渡逆变器

  在这种逆变器中,输入总线电压或电流是固定不变的,而软开关条件的实现是通过逆变开关两端的电压和电流谐振而产生的。理想状况下,谐振只发生在开关过渡的瞬间,而且应该使谐振电路在功率传递到负载的过程中吸收的能量达到最小值,当然谐振能量一定要足够大(与负载的变化无关),以满足产生ZVS或ZCS的条件。

  这类逆变器包括极谐振电路、谐振吸收电路、准谐振电路和软开关过渡技术的PWM转换(ZVT和ZCT)。

(1)极谐振逆变器(RPI)

  极谐振技术的最早应用是在DC/DC变换器中,但后来在DC/AC逆变器中被证明也是一种较方便的方法。这一类逆变器的共同特点是:辅助谐振电路放置在逆变桥上。对于三相逆变器来说,辅助谐振电路由原来的一组变为三组,即每桥臂均配有一组,通过辅助谐振电路,使每一相极点(即每一桥臂上下开关器件连接点)电压产生谐振,从而为开关器件创造了零电压导通条件。

  图4给出了一个单相极谐振逆变器(RPI)的原理图。

Mzf4.gif (5160 字节)

图4单相RPI电路

工作过程简述如下:

  设主开关器件上的电压是Us,谐振电感不断地被极电压Us所充电和放电,且供给负载一个交变的电流,电感Lr和电容Cr的谐振只发生在极电压反向瞬间。

  假设S2导通,S1处于关断状态,为了激活RPI工作过程,S2在ZVS处关断,并联谐振电感Lr在两个谐振电容Cr之间进行能量的交换。S1上的电压达到零点时由二极管D1导通,对负载电流进行续流。这时,谐振电感被直流电压充电至Us/2,且S1可在此刻实

Mzf5.gif (5377 字节)

图5ARCPI电路

现ZVS导通。事实上,由于谐振过程仅仅只发生在开关周期的极小一部分,这种拓扑结构也被称为准谐振ZVS。

  极谐振逆变器发展的最大障碍是开关的冲击电流,这是由于为了给主开关器件创造一个ZVS的条件,必须使电感电流足够大以满足和谐振电容之间的能量交换,由此而引起开关上的电流峰值和有效值至少分别是负载电流的2倍和12倍。所以功率器件的感性损耗可能要比传统意义上的PWM逆变器高出很多,而且导致了过高的元器件成本和过低的开关利用率。

  另一方面,对于那些较轻的负载,电感电流还不一定会有效地创造出ZVS条件,使得逆变器的带载能力范围受到了限制。还有,由于谐波电感和负载串联,所以这种结构的逆变器似乎也不适合于电动机的驱动。

  (2)谐振吸收逆变器

  谐振吸收逆变器也称为辅助谐振转换极逆变器(ARCPI),其基本结构如图5所示。

  在该电路中,对应每一相,都有一个LC的谐振转换环节。谐振转换电路包括谐振电感Lr和并联在每个主开关上的谐振电容Crp/Crn,主开关为自关断器件。其工作原理也非常容易理解:假设负载电感L1远大于谐振电感Lr,那么在主开关换向瞬间,负载电流可以看成是一恒流源,初始状态io为图示方向,开关Sp处于关断,二极管Dn处于续流状态,即主电流io流过Dn。开通V1及Sn,谐振电流iL开始线性增加,当iL到达io时,流过Dn的电流变为零,iL-io的差值流过开关Sn,当iL-io升高室整定值时,关断Sn,谐振开始,在谐振期间,输出电压Uo从零增加,当Uo等于Us时,开关Sp就可以在零电压下开通,同时iL下降为零时,在零电流条件下关断V1。关于这种类型的逆变器的发展和应用请参阅参考文献1。

  (3)软开关过渡PWM逆变器(ZVT-PWM、ZCT-PWM):

  软开关过渡技术的概念最初的应用出现在AC/DC和DC/DC变换器中,后来才被扩展到DC/AC逆变器中。这种结构综合考虑了PWM技术和软开关技术的优点。在这种模式的逆变器电路结构中,直流总线上的电压/电流是固定不变的,而逆变桥则采用传统的PWM调制方式,增加了一个辅助的谐振电路。

  辅助谐振电路只工作在逆变桥开关的切换瞬间,而开关周期的其余时间维持PWM调制的特点。辅助开关的工作过程一定要和PWM控制同步。

①ZVT-PWM逆变器

其三相电路如图6所示。

当主功率开关零电压/零电流过渡换向的时候,辅助开关Sr导通,经过二极管Dfb把多余的电感能量反馈回直流侧。所有的二极管均在零电流条件下导通或关断,而主功率开关在零电压条件下切换,这样开关损耗将会显著地降低。

  ZVT-PWM拓扑结构主功率器件通常选用MOSFET或IGBT。它们的寄生电容将成为谐振网络的一部分。所以这种电路可以工作在很高的开关频率下,除了主功率开关切换过渡的瞬间,这种电路的工作过程和传统意义上的PWM电路完全类似。

  显然,谐振电感Lo和逆变桥上电容(C1~C6)之

Mzf6.gif (7407 字节)

图6ZVT-PWM逆变器

Mzf7.gif (8357 字节)

图7ZCT-PWM逆变器

间的谐振是有源开关获得零电压切换的必备条件。由于所有的有源器件ZVT开关过程都处于PWM操作过程当中,所以相对于传统的PWM电路,这种拓扑电路中的开关顺序就显得比较复杂。

  在这种电路结构中,由于负载电感不是逆变器零电压工作的一部分,所以该电路可以用于电动机驱动。

②ZCT-PWM逆变器

  其三相电路如图7所示。

该逆变器电路实际上是一种在大功率晶闸管型逆变器中所使用的电流脉冲强迫换流电路的改进。电感Lo和电容Co之间的谐振给逆变桥上的有源开关在零电流条件下的关断提供了一个冲击电流。这就要求强迫给电路中开关上的电压变化峰值要比DC总线上的电压高出很多。为了在ZCS下换向,逆变桥中每个桥臂都需要两个辅助开关,两个续流二极管和一个电阻Rd。当然,这种器件数量的增加无疑使得电路的工作过程变得复杂起来。

  ZCT-PWM逆变器优点是:由于所有的有源开关都是在ZCS条件下开通或关断,显著减小了有源开关和所有二极管上的电压/电流变化峰值。另外和电流脉冲强迫换流电路相比,辅助电路谐振中的循环能量将随负载电流的变化而被调整,但并不损耗,所以电流峰值大约只有负载电流的11倍,而且辅助电路中的电感损耗也明显地减少。然而,ZCT-PWM逆变电路也存在着不足之处:逆变桥上的二极管和辅助开关都不是软关断,而是在一定的负载电流下关断,所以关断损耗对该电路来说是一个需要解决的问题。

③一般特性:

  对于ZVT-PWM逆变电路,当辅助网络工作时,无论是从直流侧还是从负载侧来看都是一个并联谐振网络,而对于ZCT-PWM逆变电路,却是一个串联谐振网络。这两种电路中逆变桥上的开关都各自独立地在ZVS或ZCS条件下开通或关断。然而在ZVT-PWM逆变电路中,辅助开关和所有的二极管只能在ZCS条件下开通或关断,而在ZCT-PWM逆变电路中,辅助开关和逆变桥上的二极管却都是在一定的负载电流下进行硬关断。另外,在这两种电路中,谐振网络开关的位置和谐振吸收电路的拓扑结构很相似。近年来,对这种逆变器不断探索改进的主要目标是使这种电路的工作特性更接近于传统的PWM电路。

33谐振环节逆变器

  在谐振环节逆变器的电路中,谐振环节位于直流总线上。根据该谐振环节的结构特性和开关模式,此种逆变器又分为以下两种类型:

  ●谐振交流环节逆变器(RESONANTAC-LINKINVERTER—RACLI)

  指的是谐振环节的输出是交流的电压或交流的电流,从而给逆变桥上的开关提供了ZCS或ZVS条件,同时也就要求逆变桥上的开关必须是双向器件。

  ●谐振直流环节逆变器(RESONANTDC-LINKINVERTER—RDCLI)

  指的是谐振环节的输出是直流脉冲,同样可以为逆变桥上的开关提供ZCS或ZVS条件,这时逆变桥上的开关只要求是单向器件。

(1)RACLI电路

  图8示出了串联谐振交流环节逆变器(SRACLI)和并联谐振交流环节逆变器(PRACLI)的电路。

  在SRACLI电路中,谐振环节输出一个正弦波电流,而在PRACLI电路中,谐振环节输出一个正弦波电压。它们的固定频率:

Mzf8.gif (9823 字节)

图8RACLI电路

(a)SRACLI电路(b)PRACLI电路

Mzf9.gif (4566 字节)

图9PRDCLI电路

在图8(a)所示SRACLI电路中,一般情况下,为了获得较高的谐振频率,串联谐振环节都选择较小的电感,同时,由于谐振环节的输出是交变的电流,所以逆变桥上的开关必须是双向开关,也可以是大功率的器件,如TRIAC。另外逆变桥工作在循环换流模式,谐振电流每周期两次通过自然零点,而逆变桥上的开关也仅在此时进行换向触发。

上一页  [1] [2] [3]  下一页


本文关键字:技术  开关  逆变电源  电工文摘电工技术 - 电工文摘

《谐振软开关技术及其在逆变电源中的应用》相关文章>>>