您当前的位置:五五电子网电子知识电工技术电工基础如何选用继电器分析 正文
如何选用继电器分析

如何选用继电器分析

点击数:7657 次   录入时间:03-04 11:33:32   整理:http://www.55dianzi.com   电工基础

(3).温度变化影响: 继电器线圈电阻随温度的变化而变化,对继电器吸动、释放电压的影响是明显的。温度上升到极限高温时,释放电压趋于最大值,吸动电压相应升高;温度降到极限低温时,释放电压趋于最小值,吸动电压会有所降低。极限高温下的不吸动或吸合不可靠;极低温度下不释放或释放迟缓,将导致继电器的失效。 对电流型继电器,因吸动安匝,释放安匝不受线圈电阻变化的影响,故不随继电器温度的变化而变化。必须指出,有些用户选用电流型继电器,而不是用恒流源作为继电器的激励源,实际上用的是电压源。在这种情况,必须考虑温度对线圈电阻的影响。
(4).固体器件开关激励: a.固体器件开关的负载能力必须与被激励继电器的线圈相适应,且留有充分的裕量(一般为2倍)。 b.固体器件开关接通时,激励回路电压分配必须确保继电器线圈上的实际激励电压值符合额定工作电压要求。 c.固体器件开关关断时,激励回路的漏电流必须小于继电器的最小释放电流。 d.固体器件开关反向耐压必须与50~80V峰值电压相适应,且具有必要的余量。由于继电器线圈断电瞬间,会产生很高的浪涌电压,有时可达1500V,为将电压峰值限制在50~80V之内,必须采用适当的抑制措施。 低压激励与高压输出隔离: 现代工业自动控制系统中,往往以低压回路的固体器件开关控制小型中间继电器的输入,再用该继电器的触点转换220VAC或380VAC感性负载回路(如电磁铁、接触器线圈……),实现自动控制和保护功能。中间继电器实际上承担了低压、高压隔离并转换感性负载功能。选用此类中间继电器,必须具备良好的绝缘抗电水平和长期耐受高、低温、潮湿、砂尘及有害气体作用的能力。一般说来,抗恶劣环境能力,可由密封措施与必要的防护手段加以保证;绝缘抗电水平可由绝缘间隙、配电距离严格的控制、认定得以保证。
(5).互相干扰、误动作: 在印刷电路板上高密度组装多种继电器,特别是含有大型电磁铁或接触器产品时,有可能产生电磁互感,导致继电器误动作;也可能由于其活动部分的冲击,振动而导致其他继电器的误动作。对于灵敏型、简易通用继电器产品的安装,相关位置的安排,要特别留意。 远距离有线激励方式: 自动电话振铃电路、门铃型布线激励方式等均属于此类。由于激励用的连接导线较长,应充分考虑连接导线的电压降对实际激励值的影响,确保加在继电器线圈上的实际激励值达到规定的额定电压工作值的要求。

    3、输出参量
国内大多数继电器负载能力,只标最大纯阻性负载,这给用户在选择继电器负载时,产生二种误解,导致选型失误。误解之一是:用户实用的往往不是纯阻负载,而是感性的、灯的、电机的或容性的负载,负载大小等同或接近于阻性负载;误解之二是:负载可以从低电平到额定负载,均能适应。应该指出,能可靠转换10A阻性负载的继电器,不可转换10A的感性负载,不一定能可靠转换10mA的负载。因为不同性质负载条件下的电接触失效机理是截然不同的。 应该强调,触点故障是继电器失效的主要原因。正确理解触点在不同负载类型、不同负载大小条件的电接触特性、失效现象及失效机理,统一制造方与用户的认识,对提高继电器工作的可靠性,尤为重要。 制造厂应改进触点负载的标识、内容,对不同负载类型应分别标注。
1).白炽灯—-由于白炽灯钨丝冷态电阻很小,接通瞬间的浪涌电流高达稳态电流15倍。如此大的浪涌电流会使触点迅速烧蚀,甚至产出熔焊失效。一般可串入限流电阻来减少浪涌电流。
2).电机负载—-电动机静止时输入阻抗很小,启动瞬间浪涌电流很大。电流注入后,电流和磁场相互作用产生转矩。当电动机启动后,产生内部电动势,致使触点电流趋于减小,关断时,触点间出现反电势,常常会引起拉弧,造成触点烧蚀。不过,电机是缓慢地停下来,电机内部贮存的电磁能,动能转换成热能消耗掉一部分,反电势不会太高。
3).感性负载—-电感器、电磁铁、接触器线圈、轭流圈等都是感性负载。接通瞬间,电磁线圈有抑制电流上升的功能,不会出现浪涌电流;但关断时,贮存在电磁线圈中的电磁能通过触点间燃弧消耗掉,这将导致触点烧蚀,金属转移、沾结。采用RC网络、二极管,压敏电阻等触点保护装置可减少触点的烧蚀。
4).容性负载—-容性电路的充电电流可能非常大,开始时,电容器类似短路,其电流仅受线路电阻的限制。有时,用户并未意识到其负载是容性的,实际上,长的传输线、消除磁干扰的滤波器、电源等都是强容性的。串联限流电阻,可以减少接通瞬间的浪涌电流。
5).直流负载—-直流负载比交流负载难断开,因为电压不过零,触点开断瞬间,即产生电弧,且由于外加电压持续保持,只有电弧被拉长,不能自持而熄灭。电弧热能会使触点严重烧损。直流负载继电器触点间隙应设计大些。灭弧措施也经常被采用。
6).低电平—-低电平一般指开路电压为10~100mV;触点转换电流为微安级到10mA 。由于吸附在触点表面的有机物、化合物,难以在转换负载时消除,导致触点接触电阻大而不稳定,触点压降递增。 有效的解决办法是:选择软化电压低的触点材料;表面镀1到3u的金。从工艺上保证触点表面洁净;控制继电器内部有害气体的含量。但继电器成本将大幅度上升。
4、环境条件
环境温度导致继电器失效方式有如下几个方面:
高温条件下,绝缘材料软化、熔化;低温条件下,材料龟裂。绝缘抗电性能下降,以致失效。 高、低温交替作用下,造成结构松动,活动部件位置发生变化,导致吸合、释放失控,触点接触不良或不接触。 低温下,继电器内部水汽凝露、结冰,导致绝缘性能下降。 高温条件下,线圈电阻增大,吸动电压相应增大,造成不吸动或似吸非吸,导致继电器失效。 高温条件下,触点切换功率负载时,断弧能力降低,触点腐蚀、金属转移加剧,失效可能性增加,寿命缩短。 温度变化,将导致热继电器、固体继电器、混合式继电器性能参数不稳定。 继电器的环境温度范围由产品结构设计、所选用的材料性能和制造工艺决定,应在产品说明书规定的范围内选用。继电器的温升,尤其是交流继电器的温升加最高环境温度应小于所选漆包线绝缘材料的耐温等级。继电器的选用,必须十分注意此问题。温度范围分级如下,推荐选用: 极限低温(℃):-5±3;-10±3;-25±3;-40±3;-55±3;-65±3。 极限高温(℃):40±2;55±2;70±2;85±2;100±2;125±2;155±2;175±2;200±2。 2.湿热 湿热对继电器性能构成威胁,具体表现如下: 长期湿热将直接导致绝缘抗电水平的下降,以致完全失效。特别是长期裸露贮存或使用过程中继电器绝缘受砂尘等污染后再受湿热作用,将造成绝缘失效。 非密封继电器在湿热条件下,线圈因电化学腐蚀或霉变而断线,触点电化学腐蚀、氧化加剧;金属零件腐蚀速度显著上升,继电器性能变坏,工作可靠性变差,以致完全失效。 在湿热条件下,触点带电切换负载时,拉弧现象加剧,导致电寿命缩短。在热带、亚热带使用的电子产品,产品设计、材料选用时必须充分考虑湿热问题。
低气压条件下,将对继电器产生以下不良影响: 绝缘零、部件的绝缘电阻,介质耐压下降,触点断弧能力下降,寿命降低。继电器散热变坏,温升增高。对功耗大的继电器的影响尤为明显。对于民用继电器,低气压的影响不明显,不详谈。
砂尘污染导致继电器的失效,还未引起用户的足够重视。在自然环境条件下或一般工业车间环境条件下,尤其汽车上使用的电子装置,砂尘往往会通过散热孔、裂纹部位渗入继电器内部,经日积月累,开机察看,均可发现污尘堆积,导致活动部件转动(滑动)不灵,卡死;触点电接触失效;在潮湿作用下,金属件腐蚀加剧,绝缘件绝缘性能下降,以致失效。某些电力保护用继电器、汽车用继电器出厂前检验合格,经一、二年运行后,继电器不断出现故障。设计和使用时必须充分考虑砂尘污染的危害。用户根据实用需要,提出特定要求。
化学气氛污染—-环境气氛中的有机蒸气、氧气、二氧化硫、盐雾等,对继电器触点、金属零件、线圈、绝缘零件有侵蚀性影响,导致触点电接触不良,以致失效;导致线圈引线锈蚀断线、绝缘水平下降。 化学有害气体在自然界是普遍存在,只是在不同场合,有害气体(蒸汽)的种类不同而已。采取工艺措施,可以减轻、免除其侵蚀,但成本将大幅度上升。如军用密封继电器,通过长时间高温真空焙烘、在继电器内腔充以高纯N2,采用电子束(或激光)进行密封焊,其泄漏率可达10-8pa.cm3/s;触点镀1~3u的金。 民用继电器受价格的限制,一般只是加外壳、塑封缓解大气中有害气体(蒸气)的侵蚀,使用时,根据继电器负载大小,环境的优劣,可酌情将工艺孔打开,以提高散热能力,减少内部有机蒸气、二氧化硫对触点表面的污染。
机械振动—-继电器在强动力设备周围、在运输途中都会遇到一定频率范围、加速度值的振动;随机振动可代表导弹、高推力喷气机和火箭发动机产生的现场振动应力作用。(1) 振动对继电器的影响表现在:a.振动可能致使机械结构件松动、疲劳、断裂失效; b.闭合触点因振动产生大于标准规定时间(10us、100us)的瞬间断开而失效; 断开触点因振动产生大于标准规定时间(10us、100us)的瞬间闭合而失效; c.导致活动零件之间的相对运动,产生噪声、磨损和其他物理失效。 (2) 振动分级: 振动频率范围推荐选用: 10~55HZ; 10~100HZ;10~150HZ; 10~500HZ; 10~2000HZ。 10~5000HZ; 55~500HZ;55~2000HZ;55~5000HZ;100~2000HZ。 振幅(双振幅),加速度推荐选用: 交界频率(57HZ)以下选用双振幅(mm):0.035;0.075;0.15;0.35;0.75;1.0;1.5;2.0;3.5。 交界频率以上,选用加速度(m/s2):4.9(0.5g); 9.8(1.0g); 19.6(2.0g); 49.0(5g);98(10g); 147(15g); 196(20g); 294(30g); 490(50g)
冲击—-继电器在运输、搬运、使用中经常会受到机械冲击的作用。冲击对继电器的影响表现在:1)由于冲击,造成结构松动、损伤、断裂而丧失工作能力。2)由于冲击,闭合触点产生大于规定要求(10us或100us)的瞬间断开而失效;断开触点产生大于规定要求(10us或100us)的瞬间闭合而失效。 针对1)要求继电器应具有抗冲击强度的性能,在试验前后进行的规定项目的测量结果,应符合产品标准要求。 针对2)继电器应具有抗冲击稳定性的性能,要对触点的接触状态进行动态监测。冲击加速度分级(m/s2):147(11ms)、294(18ms)、490(11ms)、 490(3ms)、980(11ms)、980(6ms)、1960(6ms)、1960(3ms)。
加速度—-考核继电器在恒加速度应力作用下能否正常工作的能力。在常规地面电子设备上应用的继电器,一般不考核恒加速度的影响。此处不详述,大家知道有这回事就可。在航空,航天电子装置中使用的继电器,恒加速度的影响不能忽视。
5、安全要求
继电器在设计、选用时,对安全要求,应予以充分重视,尤其是中、强功率继电器。 主要考核以下几个重点: 1.绝缘材料—-要求具有阻燃性能;耐温等级温度上限≥最高环境温度+线圈温升+15℃。 2.触点过负载能力—-触点应能100次成功(交流为200次)切换两倍额定负载电流。 3.绝缘抗电水平—-继电器各导电部分之间的绝绝电阻一般应:>100MΩ;>500MΩ;>10000MΩ。 继电器各导电部分之间的绝缘应能承受使用中可能出现的最高峰值电压而不损坏,漏电流不得超过100uA(或1mA);也不允许有飞弧,闪络或击穿而引起的损坏。尤其是线圈和触点间的耐压,爬电距离应特别注意。当用继电器的触点切换220v或380v感性负载时,线圈与触点间的耐压往往要求高于4000Vac。

上一页  [1] [2] [3]  下一页


本文关键字:如何  继电器  电工基础电工技术 - 电工基础