您当前的位置:五五电子网电子知识应用领域机床模具高速加工的NC编程策略 正文
模具高速加工的NC编程策略

模具高速加工的NC编程策略

点击数:7396 次   录入时间:03-04 11:58:30   整理:http://www.55dianzi.com   机床
4 采用高速高精度的高速加工关键控制技术
采用高速高精度的关键控制技术,有利于保证高速加工的顺利实现。这些关键控制技术有加工残余分析、待加工轨迹监控、自动防过切保护、尖点控制、高精度轮廓控制技术、NURBS插补、进给速度优化、刀具轨迹编辑优化及裁剪修复、刀具轨迹验证等等。
  1. 加工残余分析 加工残余分析功能可以分析出每次切削后加工残余的准确位置,允许刀具路径创建上道工序中工件材料没有去除完全的区域。后续加工的刀具路径可在前道工序刀具路径的基础上利用加工残余分析进行优化得到。通过对工件轮廓的某些复杂部分进行加工残余分析,可尽量保持稳定的切削参数,包括保持切削厚度、进给量和切削线速度的一致性。当遇到某处切削深度有可能增加时,能降低进给速度,从而避免负载变化引起刀具偏斜,以及降低加工精度和表面质量。因此,加工残余分析可实现高速加工参数最佳化,使刀具走刀路径适应工件余量的变化,减少加工时间,避免刀具破损及过切和残留现象,从而实现刀具路径的优化。
  2. 待加工轨迹监控(look-ahead) 待加工轨迹监控功能(look-ahead)是用于监控待加工刀具路径中由于路径曲率引起的进给速度的不规则过渡,以及轴向加速度过大等不利于高速加工的各种加工条件的变化,实现动态调节进给速度的一种控制方法。CNC控制系统在进行加工控制时通过扫描待加工程序段的数控代码,预览刀具路径上是否有方向变化,并相应地调节进给速度。比如,在高进给速度下,待加工轨迹监控功能监测到拐角时,将自动减小进给速度,以防止刀具过切或出现残留现象。在待加工轨迹的平滑段,再将进给速度迅速提高到最大。这样通过动态调节进给速度,可以优化机床控制系统的动态性能,并获得高的加工精度和表面质量。
  3. 尖点控制 高速加工控制器的待加工轨迹监控(look-ahead)功能虽然可以预先了解待加工NC程序段的刀具轨迹,预览刀具轨迹及其走刀方向是否有变化,即是否存在拐角,但对于3D零件上的每个具体的走刀步距和切削余量是无法预知的。
    加工复杂的3D型面时,可根据尖点高度来计算NC精加工刀具路径的加工步距,而不是采用恒定的加工步距。采用尖点控制进行高速加工即可实现连续的表面精加工,减少去毛刺或其它手工精加工工序,而且可以根据NC精加工路径动态调整走刀步距,使材料去除率保持恒定,刀具受力状况更加稳定,并使刀具所受到的外界冲击载荷降低到最小。
  4. 自动防过切处理 高速加工时,前道工序遗留的加工余量将会导致刀具切削负载突然加大,甚至出现过切和刀具破损现象。过切对于工件的损坏是不可修复的,对于刀具的破坏也是灾难性的。通过自动防过切处理功能,可以保护刀具的切削过程,实现高速加工的安全操作。
  5. 高精度轮廓控制 通常,在模具加工中,可采用CAM系统或者其他编程系统的方法,编写子程序进行轮廓加工操作。因而加工信息可能超过CNC中子程序的存储容量,并且可能需要进行多种DNC加工操作。在这种情况下,如果不能保持CNC 高速分配处理与DNC操作的子程序进给速度之间的平衡,子程序将不能及时进行进给操作,而且机床的平滑运动也可能得不到保证。高速加工CNC系统可通过高精度轮廓控制进行高速分配处理和自动加速/减速处理。针对高于常规速度的转速进行处理和分配,可提高加工精度,缩短工作时间。

5 典型型面及难加工型面的高速加工策略

高速加工工艺技术是成功进行高速加工的关键技术之一。如果切削方法选择不当,将加剧刀具的磨损,甚至可能完全达不到高速加工的目的。根据零件轮廓的类型及其复杂程度来选择合适的加工方法,有助于实现优质高效的高速加工。

5.1 典型型面

铣削复杂二维轮廓时,无论是外轮廓或内轮廓,要安排刀具从切向进入轮廓进行加工。当轮廓加工完毕之后,刀具必须沿切线方向继续运动一段距离后再退刀,这样可以避免刀具在工件上的切入点和退出点留下接刀痕。
铣削外圆可采用直线式切向进、退刀。加工内轮廓时,可采取圆弧式切向进、退刀。加工直纹面类工件时,可采用侧铣方式一刀成型。一般立体型面特别是较为平坦的大型表面,可以用大直径端铣刀端面贴近表面进行加工,这样走刀次数少,残余高度小。加工空间受到限制的通道加工和组合曲面的过渡区域加工,可采用较大尺寸的刀具避开干涉,刀具刚性好,有利于提高加工效率与精度。

5.2 难加工型面

  1. 深腔加工 加工由薄壁分隔成的深腔型面时,所有的型腔不要一次加工完,而要采取每次只加工一部分的方式,使所有型腔壁在两边都可保持支承。
  2. 薄壁加工 立铣刀加工薄壁件时,切削力的作用易导致工件和刀具的变形。因此,加工薄壁件时,采用小轴向切深的重复端铣削,不仅可以获得恒定的刀刃半径和小的切削力,减小工件变形,而且不会出现由于刀具偏心产生的形状误差。此外,快速小切深加工薄壁零件时,加工薄壁任一面的刀具都必须保持一直向下加工,直至越过薄壁开始新的走刀路径。这样可以通过靠近刀具切削处的未切除余量使薄壁在两边都保持支承。
  3. 薄底加工 加工无支承的薄底时,应先从支承最少的表面开始加工,刀具在抬刀前一直保持向下加工,并逐步向支承靠近,加工后的底面不可再次与刀具相接触。

6 结语

为提高加工效率、加工质量和刀具寿命,保证高速加工顺利进行,高速加工NC 编程所生成的刀具路径,不仅要满足尺寸和轮廓的高精度要求,同时还需考虑不同加工工序、加工型面形状等加工过程的若干细节问题。根据高速加工的具体需要,优选刀具切入工件的方式和移刀方式,以及优选拐角加工、二次粗加工、笔式铣削、残余铣削、高效率切削法HEM、余摆线加工和插入式加工等加工方法;选择适应高速加工的切削用量;采用高速高精度的关键控制技术;有利于保证高速加工的顺利实现。

上一页  [1] [2] 


本文关键字:模具  机床应用领域 - 机床

上一篇:模块化是新标准

《模具高速加工的NC编程策略》相关文章>>>