您当前的位置:五五电子网电子知识元器件介绍元器件的选用美国美信公司低压IC选型指南 正文
美国美信公司低压IC选型指南

美国美信公司低压IC选型指南

点击数:7588 次   录入时间:03-04 12:01:58   整理:http://www.55dianzi.com   元器件的选用
)能够以大于90%的效率提供20mA至2A的输出电流,无需外部MOSFET,也不需要散热片。

图3. MAX1830开关调节器以高于90%的效率将3.3V电源转换成1.8V,输出电流范围为20mA至2A,无需外部MOSFET。
图3. MAX1830开关调节器以高于90%的效率将3.3V电源转换成1.8V,输出电流范围为20mA至2A,无需外部MOSFET。

MAX1830采用微小的16引脚QSOP封装,输入电压范围为3V至5.5V。其静态工作电流为325µA,待机模式下只有0.2µA。较高的开关频率(高达1MHz)允许外部使用小尺寸、低成本的表贴元件。

多输出开关调节器用于多电源供电系统,例如,在笔记本电脑中产生VCC,可以使用MAX1999,能够产生四路稳压输出(图4)。

图4. MAX1999开关调节器产生四路输出电压,其中包括两路高效率的大功率开关调节器和两个低功率LDO。它还包含电源就绪输出、关断控制、限流以及引脚可编程的上电顺序等功能。
图4. MAX1999开关调节器产生四路输出电压,其中包括两路高效率的大功率开关调节器和两个低功率LDO。它还包含电源就绪输出、关断控制、限流以及引脚可编程的上电顺序等功能。

 

数据转换器

A/D转换器

在便携设备中,低功耗对于A/D转换器(ADC)来说非常重要。这些应用通常要求高速转换,而高速与低功耗在系统设计中是相互矛盾的两个因素。针对这类需求,Maxim开发了一系列能够在采样期间保持合理的电流损耗,而在关断期间具有极低电流损耗的ADC。从而使转换器不必连续工作,节省系统功耗。

例如,MAX1115能够每秒钟转换100k次采样。工作在+3V时仅消耗175µA电流;自动关断模式下仅消耗1µA电流。这样,MAX1115能够在间断性采样的应用中节省大量功耗(图5)。

图5. 通过在两次数据转换之间进入1µA低功耗关断模式,MAX1115 8位ADC能够大大降低电源电流。
图5. 通过在两次数据转换之间进入1µA低功耗关断模式,MAX1115 8位ADC能够大大降低电源电流。

手机中的信号强度测量(RSSI:接收信号强度测量)是这类应用的一个典型案例,MAX1115以2ksps的速率量化信号,仅从3V电源消耗2µA电流。整体系统误差(失调、积分非线性、增益误差之和)小于1 LSB,SINAD (信号与噪声 + 失真比)低于48dB。

 

D/A转换器

新型D/A转换器(DAC)使得低压数字系统能够产生模拟输出。便携应用中,要求这些IC具有极低功耗并占用极小的电路板空间。例如,低成本的MAX5811即为一个10位、电压输出的DAC,工作电流只有170µA,关断模式下电流低至1µA,非常适合便携式应用。串行数据控制允许其集成到SOT23封装内。

MAX5811采用2.7V单电源供电,提供满摆幅输出。非常适合失调电压调整、设置偏置点调节电流(或电压)等低成本应用,也可以在其它电路中设置稳压输出。

 

运算放大器和电流监测器

运算放大器中,降低供电电压会减小输出电压摆幅,进而降低信噪比(SNR)。考虑到这一因素,很多低压运放为了保持较高的SNR,通常需要提供满摆幅输出。同样,许多运放还具有满摆幅输入电压范围(可以达到单电源或双电源摆幅)。

低压工作不仅降低了信号范围,噪底的提升也使SNR指标更加受限。低压放大器设计要求消耗极低的电流,这会造成更大的放大器噪声。此外,由于使用大阻值反馈电阻(限制系统的电源电流),也会增大噪声。

在更加复杂的情况下,高阻抗节点很容易通过耦合电容从高速数字信号拾取噪声。因此,高阻引线应尽可能短,并使其远离高速数字信号线。

值得注意的是,低压运放存在一些相互排斥的特性,包括低电源电流、低失调电压和高速。例如,MAX4236A +3V供电系列产品具有1.7MHz的增益带宽积、20µV的失调电压和350µA的电源电流。输入共模电压范围可以达到负压,且满摆幅输出。这些特性使MAX4236A系列运算放大器非常适合在低压、电池供电产品中用作仪表放大器。

Maxim的运算放大器产品线还提供双向、高边电流检测放大器,例如:工作电压为+2.7V的MAX4069系列(图6)。这些电流检测放大器采用高边检流电阻,从而避免了接地问题,芯片采用8/10引脚µMAX®封装。

图6. MAX4070双向检流放大器构成完备的电流至电压转换器
图6. MAX4070双向检流放大器构成完备的电流至电压转换器

便携产品设计中需要节约每一微安的电流,一些低电压微功耗运算放大器能够显著降低电源电流。+1.4V供电的MAX4036/MAX4038和+1.8V供电的MAX4474运算放大器具有1.2µA (最大值)的极低功耗。提供满摆幅输出,输入范围可扩展至负压。

当运算放大器工作在低压电源时,输入共模电压范围和输出电压摆幅受到极大制约。设计低压电路时必需注意这些输入和输出限制,表3列出了以上讨论运算放大器的一些数据。



www.55dianzi.com


表3. Maxim部分低压运算放大器参数选型表

Part Supply Voltage
Range (V) Supply Current
(&mICro;A, typ/max) Input Common-Mode
Voltage Range (V) Output-Voltage
Swing (V, typ) MAX4036/MAX4038 1.4 to 3.6 0.8/1.2 VSS to (VDD - 0.4) (VSS + 0.002)
to (VDD - 0.002)
MAX4069 2.7 to 24 100/250 1.35 to 24 (VSS + 0.1)
to (VDD - 0.09)
MAX4070 3.6 to 24 100/250 1.35 to 24 (VSS + 0.1)
to (VDD - 0.09)
MAX4236A 2.4 to 5.5 350/440 -0.15 to (VCC - 1.2) (VEE + 0.05)
to (VCC - 0.15)
MAX4474 1.8 to 5.5 0.75/1.2 VSS to (VDD - 1.1) (VSS + 0.001)
to (VDD - 0.004)


 

比较器

与低压运算放大器一样,低压比较器需要针对高速、低电源电流和低失调电压进行优化。例如,MAX9100微功耗比较器能够工作在1V至5.5V电源范围,仅消耗12µA (最大值)的电源电流。该器件具有3.7ms的传输延时、2mV失调,输出摆幅可以达到电源电压的0.3V以内,共模范围可以扩展到负压。

有些应用需要监测电源的输出电压,要求超低功耗。MAX9017A采用1.8V至5.5V电源供电,仅消耗1.2µA (典型值)电源电流,在单一芯片内集成了一个电压基准和一个比较器。

 

微处理器监控电路

任何微处理器(µP)系统都需要“监控”管理,以避免出现意想不到的操作。监控电路可以是一个简单的复位发生器,确保上电后通过复位信号使系统在已知条件下启动。当然,许多监控电路还包含了其它功能,例如:备份电池管理、存储器写保护、用于监测软件运行的“看门狗”定时器等。

备份电池能够在VCC掉电时为一些关键电路(CMOS存储器、实时时钟等)供电,维持这些器件的正常工作。通过监测VCC,µP监控电路决定何时将系统切换到备份电池供电。低压工作时,还会出现一些5V系统不存在的工程问题。

对于5V系统,只是简单地比较VCC和备份电池的电压,一旦VCC低于电池电压,则将系统切换到备份电池供电。但在低压系统中,这样的操作可能会导致开关失效:备份锂电池的电压通常在3.6V左右,高于3.3V系统中VCC的3.0V下限。Maxim的监控电路允许备份电池电压高于VCC,只有当VCC跌落到所设置的门限时才会切换到电池供电,从而解决了这一问题。

MAX823/MAX824提供电压监测和看门狗定时器,采用5引脚SC70和SOT23封装(图7)。

图7. MAX823提供电源电压监测、看门狗、手动复位功能,采用5引脚SC70/SOT23封装。
图7. MAX823提供电源电压监测、看门狗、手动复位功能,采用5引脚SC70/SOT23封装。

MAX806R/S/T包括电池切换电路,能够监测3V和5V VCC双电源供电系统(图8)。该电路中,主VCC比较器用于监测3V电源,电源失效比较器(PFI)用于监测5V电源。

图8. 配置如图所示,该µP监控电路用于监测双电压系统的5V和3V VCC。
图8. 配置如图所示,该µP监控电路用于监测双电压系统的5V和3V V

上一页  [1] [2] [3]  下一页


本文关键字:美国  元器件的选用元器件介绍 - 元器件的选用

《美国美信公司低压IC选型指南》相关文章>>>